Boundedness in a chemotaxis system with weak singular sensitivity and logistic kinetics in any dimensional setting

IF 2.4 2区 数学 Q1 MATHEMATICS
Halil Ibrahim Kurt
{"title":"Boundedness in a chemotaxis system with weak singular sensitivity and logistic kinetics in any dimensional setting","authors":"Halil Ibrahim Kurt","doi":"10.1016/j.jde.2024.10.027","DOIUrl":null,"url":null,"abstract":"<div><div>This paper deals with the following parabolic-elliptic chemotaxis competition system with weak singular sensitivity and logistic source<span><span><span>(0.1)</span><span><math><mrow><mo>{</mo><mtable><mtr><mtd><msub><mrow><mi>u</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><mi>Δ</mi><mi>u</mi><mo>−</mo><mi>χ</mi><mi>∇</mi><mo>⋅</mo><mo>(</mo><mfrac><mrow><mi>u</mi></mrow><mrow><msup><mrow><mi>v</mi></mrow><mrow><mi>λ</mi></mrow></msup></mrow></mfrac><mi>∇</mi><mi>v</mi><mo>)</mo><mo>+</mo><mi>r</mi><mi>u</mi><mo>−</mo><mi>μ</mi><msup><mrow><mi>u</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>,</mo><mspace></mspace></mtd><mtd><mi>x</mi><mo>∈</mo><mi>Ω</mi><mo>,</mo></mtd></mtr><mtr><mtd><mn>0</mn><mo>=</mo><mi>Δ</mi><mi>v</mi><mo>−</mo><mi>α</mi><mi>v</mi><mo>+</mo><mi>β</mi><mi>u</mi><mo>,</mo><mspace></mspace></mtd><mtd><mi>x</mi><mo>∈</mo><mi>Ω</mi><mo>,</mo></mtd></mtr><mtr><mtd><mfrac><mrow><mo>∂</mo><mi>u</mi></mrow><mrow><mo>∂</mo><mi>ν</mi></mrow></mfrac><mo>=</mo><mfrac><mrow><mo>∂</mo><mi>v</mi></mrow><mrow><mo>∂</mo><mi>ν</mi></mrow></mfrac><mo>=</mo><mn>0</mn><mo>,</mo><mspace></mspace></mtd><mtd><mi>x</mi><mo>∈</mo><mo>∂</mo><mi>Ω</mi><mo>,</mo></mtd></mtr></mtable></mrow></math></span></span></span> where <span><math><mi>Ω</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>(</mo><mi>N</mi><mo>≥</mo><mn>1</mn><mo>)</mo></math></span> is a smooth bounded domain, the parameters <span><math><mi>χ</mi><mo>,</mo><mspace></mspace><mi>r</mi><mo>,</mo><mspace></mspace><mi>μ</mi><mo>,</mo><mspace></mspace><mi>α</mi><mo>,</mo><mspace></mspace><mi>β</mi></math></span> are positive constants and <span><math><mi>λ</mi><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></math></span>.</div><div>It is well known that for parabolic-elliptic chemotaxis systems including singularity, a uniform-in-time positive pointwise lower bound for <em>v</em> is vitally important for establishing the global boundedness of classical solutions since the cross-diffusive term becomes unbounded near <span><math><mi>v</mi><mo>=</mo><mn>0</mn></math></span>. To this end, a key step in the literature is to establish a proper positive lower bound for the mass functional <span><math><msub><mrow><mo>∫</mo></mrow><mrow><mi>Ω</mi></mrow></msub><mi>u</mi></math></span>, which, due to the presence of logistic kinetics, is not preserved and hence it turns in for <em>v</em>. In contrast to this approach, in this article, the boundedness of classical solutions of (0.1) is obtained without using the uniformly positive lower bound of <em>v</em>.</div><div>Among others, it has been proven that without establishing a uniform-in-time positive pointwise lower bound for <em>v</em>, if <span><math><mi>λ</mi><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></math></span>, then there exists <span><math><mi>μ</mi><mo>&gt;</mo><msup><mrow><mi>μ</mi></mrow><mrow><mo>⁎</mo></mrow></msup></math></span> such that for all suitably smooth initial data, <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>p</mi></mrow></msup></math></span>-norm (for any <span><math><mi>p</mi><mo>≥</mo><mn>2</mn></math></span>) of any globally defined positive solution is bounded; moreover, problem (0.1) possesses a unique globally defined classical solution. In addition, the solutions are shown to be uniformly bounded under the additional assumption<span><span><span><math><mi>λ</mi><mo>&lt;</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mo>+</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mi>N</mi></mrow></mfrac><mspace></mspace><mspace></mspace><mtext>with</mtext><mspace></mspace><mspace></mspace><mi>N</mi><mo>≥</mo><mn>2</mn><mo>.</mo></math></span></span></span></div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"416 ","pages":"Pages 1429-1461"},"PeriodicalIF":2.4000,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039624006831","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper deals with the following parabolic-elliptic chemotaxis competition system with weak singular sensitivity and logistic source(0.1){ut=Δuχ(uvλv)+ruμu2,xΩ,0=Δvαv+βu,xΩ,uν=vν=0,xΩ, where ΩRN(N1) is a smooth bounded domain, the parameters χ,r,μ,α,β are positive constants and λ(0,1).
It is well known that for parabolic-elliptic chemotaxis systems including singularity, a uniform-in-time positive pointwise lower bound for v is vitally important for establishing the global boundedness of classical solutions since the cross-diffusive term becomes unbounded near v=0. To this end, a key step in the literature is to establish a proper positive lower bound for the mass functional Ωu, which, due to the presence of logistic kinetics, is not preserved and hence it turns in for v. In contrast to this approach, in this article, the boundedness of classical solutions of (0.1) is obtained without using the uniformly positive lower bound of v.
Among others, it has been proven that without establishing a uniform-in-time positive pointwise lower bound for v, if λ(0,1), then there exists μ>μ such that for all suitably smooth initial data, Lp-norm (for any p2) of any globally defined positive solution is bounded; moreover, problem (0.1) possesses a unique globally defined classical solution. In addition, the solutions are shown to be uniformly bounded under the additional assumptionλ<12+1NwithN2.
具有弱奇异敏感性和逻辑动力学的趋化系统在任意维度环境中的有界性
本文讨论了以下抛物线-椭圆趋化竞争系统,该系统具有弱奇异敏感性和逻辑源(0.1){ut=Δu-χ∇-u(λv∇v)+ru-μu2,x∈Ω,0=Δv-αv+βu,x∈Ω,∂u∂ν=∂v∂ν=0∈∂Ω,其中Ω⊂RN(N≥1)为光滑有界域,参数χ,r,μ,αβ为正常数,λ∈(0,1)。众所周知,对于包含奇异性的抛物线-椭圆趋化系统,由于交叉扩散项在 v=0 附近变得无界,因此 v 的时间均匀正向点式下界对于确定经典解的全局有界性至关重要。为此,文献中的一个关键步骤是为质量函数∫ωu 建立适当的正下界,由于逻辑动力学的存在,质量函数∫ωu 是不保留的,因此它在 v 时会变为有界。与这种方法不同,本文在不使用 v 的均匀正下界的情况下得到了 (0.1) 经典解的有界性。其中,本文证明了在不建立 v 的时间均匀正点下限的情况下,若 λ∈(0,1),则存在 μ>μ⁎,从而对于所有适当光滑的初始数据,任何全局定义正解的 Lp-norm(对于任意 p≥2)都是有界的;此外,问题(0.1)具有唯一的全局定义经典解。此外,在附加假设λ<12+1NwithN≥2 条件下,解也证明是均匀有界的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.40
自引率
8.30%
发文量
543
审稿时长
9 months
期刊介绍: The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools. Research Areas Include: • Mathematical control theory • Ordinary differential equations • Partial differential equations • Stochastic differential equations • Topological dynamics • Related topics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信