Orbital stability of smooth solitons in H1 ∩ W1,4 for the modified Camassa-Holm equation

IF 2.4 2区 数学 Q1 MATHEMATICS
Qian Zhang, Guangming Zhu
{"title":"Orbital stability of smooth solitons in H1 ∩ W1,4 for the modified Camassa-Holm equation","authors":"Qian Zhang,&nbsp;Guangming Zhu","doi":"10.1016/j.jde.2024.10.032","DOIUrl":null,"url":null,"abstract":"<div><div>We analyze the stability of smooth solitary waves in the modified Camassa-Holm equation, a quasilinear, integrable model for shallow water wave propagation. Through phase portrait analysis, we identify a unique smooth solitary wave within a certain range of the dispersive parameter. Using variational methods, we prove the orbital stability of this wave under small disturbances, solving a minimization problem with constraints. We strengthen the <span><math><msup><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msup><mo>∩</mo><msup><mrow><mi>W</mi></mrow><mrow><mn>1</mn><mo>,</mo><mn>4</mn></mrow></msup></math></span> stability result in Li and Liu (2021) <span><span>[8]</span></span>.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"416 ","pages":"Pages 1390-1404"},"PeriodicalIF":2.4000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039624006879","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We analyze the stability of smooth solitary waves in the modified Camassa-Holm equation, a quasilinear, integrable model for shallow water wave propagation. Through phase portrait analysis, we identify a unique smooth solitary wave within a certain range of the dispersive parameter. Using variational methods, we prove the orbital stability of this wave under small disturbances, solving a minimization problem with constraints. We strengthen the H1W1,4 stability result in Li and Liu (2021) [8].
修正卡马萨-霍尔姆方程 H1 ∩ W1,4 中光滑孤子的轨道稳定性
我们分析了修正的卡马萨-霍尔姆方程中光滑孤波的稳定性,该方程是一种准线性、可积分的浅水波传播模型。通过相位肖像分析,我们确定了在一定分散参数范围内的唯一平滑孤波。利用变分法,我们证明了这种波在小扰动下的轨道稳定性,求解了一个带约束条件的最小化问题。我们加强了 Li 和 Liu (2021) [8] 中的 H1∩W1,4 稳定性结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.40
自引率
8.30%
发文量
543
审稿时长
9 months
期刊介绍: The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools. Research Areas Include: • Mathematical control theory • Ordinary differential equations • Partial differential equations • Stochastic differential equations • Topological dynamics • Related topics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信