Minimal P-cyclic periodic brake orbits in semi-positive Hamiltonian system

IF 2.4 2区 数学 Q1 MATHEMATICS
{"title":"Minimal P-cyclic periodic brake orbits in semi-positive Hamiltonian system","authors":"","doi":"10.1016/j.jde.2024.10.021","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, the authors study the minimal period problems for brake orbits in two types of first order Hamiltonian systems in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn><mi>n</mi></mrow></msup></math></span>, namely the superquadratic type and asymptotically linear type. In both cases the Hamiltonian systems are assumed to be reversible, semi-positive, and symmetric with respect to certain orthogonal symplectic linear transformation <em>P</em> generating a <em>p</em>-order cyclic subgroup acting freely on <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn><mi>n</mi></mrow></msup><mo>∖</mo><mo>{</mo><mn>0</mn><mo>}</mo></math></span>. The authors prove that if <span><math><mi>P</mi><mo>=</mo><mi>R</mi><mo>(</mo><msub><mrow><mi>θ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>)</mo><mo>⋄</mo><mo>…</mo><mo>⋄</mo><mi>R</mi><mo>(</mo><msub><mrow><mi>θ</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></math></span> and <span><math><msub><mrow><mi>θ</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>∈</mo><mo>[</mo><mn>0</mn><mo>,</mo><mi>π</mi><mo>]</mo></math></span> for each <span><math><mn>1</mn><mo>≤</mo><mi>i</mi><mo>≤</mo><mi>n</mi></math></span>, then for each <span><math><mi>T</mi><mo>&gt;</mo><mn>0</mn></math></span> there exists a <em>pT</em>-periodic <em>P</em>-cyclic brake orbit with minimal period belonging to an finite set with the form<span><span><span><math><mrow><mo>{</mo><mfrac><mrow><mi>p</mi><mi>T</mi></mrow><mrow><mi>l</mi><mi>p</mi><mo>+</mo><mi>q</mi></mrow></mfrac><mo>:</mo><mi>l</mi><mo>,</mo><mi>q</mi><mo>∈</mo><mi>Z</mi><mo>,</mo><mspace></mspace><mn>0</mn><mo>≤</mo><mi>l</mi><mo>≤</mo><mi>n</mi><mo>+</mo><mn>1</mn><mo>,</mo><mspace></mspace><mrow><mi>gcd</mi></mrow><mo>(</mo><mi>q</mi><mo>,</mo><mi>p</mi><mo>)</mo><mo>=</mo><mn>1</mn><mo>,</mo><mspace></mspace><mn>1</mn><mo>≤</mo><mi>q</mi><mo>≤</mo><mi>p</mi><mo>−</mo><mn>1</mn><mo>}</mo></mrow></math></span></span></span> for both cases, which is an generalization of the results in <span><span>[10]</span></span>. The main tools involved are the iteration inequalities for Maslov-type indices, the saddle point reduction method and the Galerkin approximation method under the corresponding Lagrangian boundary condition.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039624006776","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, the authors study the minimal period problems for brake orbits in two types of first order Hamiltonian systems in R2n, namely the superquadratic type and asymptotically linear type. In both cases the Hamiltonian systems are assumed to be reversible, semi-positive, and symmetric with respect to certain orthogonal symplectic linear transformation P generating a p-order cyclic subgroup acting freely on R2n{0}. The authors prove that if P=R(θ1)R(θn) and θi[0,π] for each 1in, then for each T>0 there exists a pT-periodic P-cyclic brake orbit with minimal period belonging to an finite set with the form{pTlp+q:l,qZ,0ln+1,gcd(q,p)=1,1qp1} for both cases, which is an generalization of the results in [10]. The main tools involved are the iteration inequalities for Maslov-type indices, the saddle point reduction method and the Galerkin approximation method under the corresponding Lagrangian boundary condition.
半正向哈密顿系统中的最小 P 循环周期性制动轨道
在本文中,作者研究了 R2n 中两类一阶哈密顿系统制动轨道的最小周期问题,即超二次型和渐近线性型。在这两种情况下,哈密顿系统都被假定为可逆的、半正的和对称的,相对于某些正交交映线性变换 P,产生一个自由作用于 R2n∖{0} 的 p 阶循环子群。作者证明,如果 P=R(θ1)⋄...⋄R(θn),且θi∈[0,π]为每个 1≤i≤n,那么对于每个 T>0,存在一个具有最小周期的 pT 周期 P 循环制动轨道,属于一个有限集,其形式为{pTlp+q:l,q∈Z,0≤l≤n+1,gcd(q,p)=1,1≤q≤p-1},这是对 [10] 中结果的概括。所涉及的主要工具是马斯洛夫指数迭代不等式、鞍点还原法和相应拉格朗日边界条件下的伽勒金近似法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.40
自引率
8.30%
发文量
543
审稿时长
9 months
期刊介绍: The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools. Research Areas Include: • Mathematical control theory • Ordinary differential equations • Partial differential equations • Stochastic differential equations • Topological dynamics • Related topics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信