{"title":"Minimal P-cyclic periodic brake orbits in semi-positive Hamiltonian system","authors":"Ruiliang Gao , Xiaorui Li , Duanzhi Zhang","doi":"10.1016/j.jde.2024.10.021","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, the authors study the minimal period problems for brake orbits in two types of first order Hamiltonian systems in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn><mi>n</mi></mrow></msup></math></span>, namely the superquadratic type and asymptotically linear type. In both cases the Hamiltonian systems are assumed to be reversible, semi-positive, and symmetric with respect to certain orthogonal symplectic linear transformation <em>P</em> generating a <em>p</em>-order cyclic subgroup acting freely on <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn><mi>n</mi></mrow></msup><mo>∖</mo><mo>{</mo><mn>0</mn><mo>}</mo></math></span>. The authors prove that if <span><math><mi>P</mi><mo>=</mo><mi>R</mi><mo>(</mo><msub><mrow><mi>θ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>)</mo><mo>⋄</mo><mo>…</mo><mo>⋄</mo><mi>R</mi><mo>(</mo><msub><mrow><mi>θ</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></math></span> and <span><math><msub><mrow><mi>θ</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>∈</mo><mo>[</mo><mn>0</mn><mo>,</mo><mi>π</mi><mo>]</mo></math></span> for each <span><math><mn>1</mn><mo>≤</mo><mi>i</mi><mo>≤</mo><mi>n</mi></math></span>, then for each <span><math><mi>T</mi><mo>></mo><mn>0</mn></math></span> there exists a <em>pT</em>-periodic <em>P</em>-cyclic brake orbit with minimal period belonging to an finite set with the form<span><span><span><math><mrow><mo>{</mo><mfrac><mrow><mi>p</mi><mi>T</mi></mrow><mrow><mi>l</mi><mi>p</mi><mo>+</mo><mi>q</mi></mrow></mfrac><mo>:</mo><mi>l</mi><mo>,</mo><mi>q</mi><mo>∈</mo><mi>Z</mi><mo>,</mo><mspace></mspace><mn>0</mn><mo>≤</mo><mi>l</mi><mo>≤</mo><mi>n</mi><mo>+</mo><mn>1</mn><mo>,</mo><mspace></mspace><mrow><mi>gcd</mi></mrow><mo>(</mo><mi>q</mi><mo>,</mo><mi>p</mi><mo>)</mo><mo>=</mo><mn>1</mn><mo>,</mo><mspace></mspace><mn>1</mn><mo>≤</mo><mi>q</mi><mo>≤</mo><mi>p</mi><mo>−</mo><mn>1</mn><mo>}</mo></mrow></math></span></span></span> for both cases, which is an generalization of the results in <span><span>[10]</span></span>. The main tools involved are the iteration inequalities for Maslov-type indices, the saddle point reduction method and the Galerkin approximation method under the corresponding Lagrangian boundary condition.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"416 ","pages":"Pages 1347-1379"},"PeriodicalIF":2.4000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039624006776","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, the authors study the minimal period problems for brake orbits in two types of first order Hamiltonian systems in , namely the superquadratic type and asymptotically linear type. In both cases the Hamiltonian systems are assumed to be reversible, semi-positive, and symmetric with respect to certain orthogonal symplectic linear transformation P generating a p-order cyclic subgroup acting freely on . The authors prove that if and for each , then for each there exists a pT-periodic P-cyclic brake orbit with minimal period belonging to an finite set with the form for both cases, which is an generalization of the results in [10]. The main tools involved are the iteration inequalities for Maslov-type indices, the saddle point reduction method and the Galerkin approximation method under the corresponding Lagrangian boundary condition.
期刊介绍:
The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools.
Research Areas Include:
• Mathematical control theory
• Ordinary differential equations
• Partial differential equations
• Stochastic differential equations
• Topological dynamics
• Related topics