The Leray-Lions existence theorem under general growth conditions

IF 2.4 2区 数学 Q1 MATHEMATICS
Giovanni Cupini , Paolo Marcellini , Elvira Mascolo
{"title":"The Leray-Lions existence theorem under general growth conditions","authors":"Giovanni Cupini ,&nbsp;Paolo Marcellini ,&nbsp;Elvira Mascolo","doi":"10.1016/j.jde.2024.10.025","DOIUrl":null,"url":null,"abstract":"<div><div>We prove an existence (and regularity) result of weak solutions <span><math><mi>u</mi><mo>∈</mo><msubsup><mrow><mi>W</mi></mrow><mrow><mn>0</mn></mrow><mrow><mn>1</mn><mo>,</mo><mi>p</mi></mrow></msubsup><mrow><mo>(</mo><mi>Ω</mi><mo>)</mo></mrow><mo>∩</mo><msubsup><mrow><mi>W</mi></mrow><mrow><mi>loc</mi></mrow><mrow><mn>1</mn><mo>,</mo><mi>q</mi></mrow></msubsup><mrow><mo>(</mo><mi>Ω</mi><mo>)</mo></mrow></math></span>, to a Dirichlet problem for a second order elliptic equation in divergence form, under general and <span><math><mi>p</mi><mo>,</mo><mi>q</mi><mo>−</mo></math></span><em>growth conditions</em> of the differential operator. This is a first attempt to extend to general growth the well known Leray-Lions existence theorem, which holds under the so-called natural growth conditions with <span><math><mi>q</mi><mo>=</mo><mi>p</mi></math></span>. We found a way to treat the general context with explicit dependence on <span><math><mo>(</mo><mi>x</mi><mo>,</mo><mi>u</mi><mo>)</mo></math></span>, other than on the gradient variable <span><math><mi>ξ</mi><mo>=</mo><mi>D</mi><mi>u</mi></math></span>; these aspects require particular attention due to the <span><math><mi>p</mi><mo>,</mo><mi>q</mi></math></span>-context, with some differences and new difficulties compared to the standard case <span><math><mi>p</mi><mo>=</mo><mi>q</mi></math></span>.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"416 ","pages":"Pages 1405-1428"},"PeriodicalIF":2.4000,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002203962400682X","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We prove an existence (and regularity) result of weak solutions uW01,p(Ω)Wloc1,q(Ω), to a Dirichlet problem for a second order elliptic equation in divergence form, under general and p,qgrowth conditions of the differential operator. This is a first attempt to extend to general growth the well known Leray-Lions existence theorem, which holds under the so-called natural growth conditions with q=p. We found a way to treat the general context with explicit dependence on (x,u), other than on the gradient variable ξ=Du; these aspects require particular attention due to the p,q-context, with some differences and new difficulties compared to the standard case p=q.
一般增长条件下的勒雷-狮子存在定理
我们证明了在微分算子的一般和 p,q 增长条件下,发散形式二阶椭圆方程的 Dirichlet 问题的弱解 u∈W01,p(Ω)∩Wloc1,q(Ω) 的存在性(和正则性)结果。这是首次尝试将众所周知的勒雷-狮子存在定理扩展到一般增长,该定理在 q=p 的所谓自然增长条件下成立。除了梯度变量ξ=Du之外,我们还找到了一种明确依赖 (x,u) 的一般情况下的处理方法;由于 p,q 条件,这些方面需要特别注意,与标准情况 p=q 相比,存在一些差异和新的困难。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.40
自引率
8.30%
发文量
543
审稿时长
9 months
期刊介绍: The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools. Research Areas Include: • Mathematical control theory • Ordinary differential equations • Partial differential equations • Stochastic differential equations • Topological dynamics • Related topics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信