A decoupling method based on phase-shift calculation by encoding color fringe pattern

IF 3.5 2区 工程技术 Q2 OPTICS
Yanjun Fu, Yunzhan Li, Fangfang Li, Guangyu Jiang, Yiliang Huang
{"title":"A decoupling method based on phase-shift calculation by encoding color fringe pattern","authors":"Yanjun Fu,&nbsp;Yunzhan Li,&nbsp;Fangfang Li,&nbsp;Guangyu Jiang,&nbsp;Yiliang Huang","doi":"10.1016/j.optlaseng.2024.108658","DOIUrl":null,"url":null,"abstract":"<div><div>Although the RGB channel requires fewer images for performing 3D measurement than the sinusoidal fringe phase-shift method, the coupling between the channels affect the measurement accuracy. Along these lines, a novel decoupling method was proposed, which was based on phase-shift calculation by encoding sinusoidal color fringe patterns. In our approach, every six sinusoidal fringes in the sinusoidal fringe phase-shift method are encoded into four sinusoidal color fringe patterns. These sinusoidal color fringes can replace six sinusoidal fringes without the effect of crosstalk. Compared with the traditional sinusoidal color fringe phase-shift method, a higher measurement accuracy was demonstrated. Moreover, there was no need for preprocessing and post-processing, and the calculation speed was faster.</div></div>","PeriodicalId":49719,"journal":{"name":"Optics and Lasers in Engineering","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics and Lasers in Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0143816624006365","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Although the RGB channel requires fewer images for performing 3D measurement than the sinusoidal fringe phase-shift method, the coupling between the channels affect the measurement accuracy. Along these lines, a novel decoupling method was proposed, which was based on phase-shift calculation by encoding sinusoidal color fringe patterns. In our approach, every six sinusoidal fringes in the sinusoidal fringe phase-shift method are encoded into four sinusoidal color fringe patterns. These sinusoidal color fringes can replace six sinusoidal fringes without the effect of crosstalk. Compared with the traditional sinusoidal color fringe phase-shift method, a higher measurement accuracy was demonstrated. Moreover, there was no need for preprocessing and post-processing, and the calculation speed was faster.
基于相移计算的彩色条纹编码解耦方法
虽然与正弦波条纹相移法相比,RGB 通道进行三维测量所需的图像更少,但通道之间的耦合会影响测量精度。因此,我们提出了一种新颖的去耦方法,该方法是通过编码正弦彩色条纹图案进行相移计算。在我们的方法中,正弦条纹相移法中的每六个正弦条纹被编码成四个正弦彩色条纹图案。这些正弦彩色条纹可以取代六个正弦条纹,而不会产生串扰。与传统的正弦彩色条纹相移法相比,该方法的测量精度更高。此外,无需预处理和后处理,计算速度也更快。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Optics and Lasers in Engineering
Optics and Lasers in Engineering 工程技术-光学
CiteScore
8.90
自引率
8.70%
发文量
384
审稿时长
42 days
期刊介绍: Optics and Lasers in Engineering aims at providing an international forum for the interchange of information on the development of optical techniques and laser technology in engineering. Emphasis is placed on contributions targeted at the practical use of methods and devices, the development and enhancement of solutions and new theoretical concepts for experimental methods. Optics and Lasers in Engineering reflects the main areas in which optical methods are being used and developed for an engineering environment. Manuscripts should offer clear evidence of novelty and significance. Papers focusing on parameter optimization or computational issues are not suitable. Similarly, papers focussed on an application rather than the optical method fall outside the journal''s scope. The scope of the journal is defined to include the following: -Optical Metrology- Optical Methods for 3D visualization and virtual engineering- Optical Techniques for Microsystems- Imaging, Microscopy and Adaptive Optics- Computational Imaging- Laser methods in manufacturing- Integrated optical and photonic sensors- Optics and Photonics in Life Science- Hyperspectral and spectroscopic methods- Infrared and Terahertz techniques
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信