Xiaoguang Huang , Hehe Liu , Chang Huang , Jiren Cui , Zhenxiong Xiao , Xiuxing Zhu
{"title":"Creep relaxation to relieve residual stress in girth-butt welded X80 pipelines: Simulation and experiment","authors":"Xiaoguang Huang , Hehe Liu , Chang Huang , Jiren Cui , Zhenxiong Xiao , Xiuxing Zhu","doi":"10.1016/j.tws.2024.112597","DOIUrl":null,"url":null,"abstract":"<div><div>The residual stress in girth-butt weld presents safety risks for large-diameter oil-gas pipelines, necessitating an in-depth investigation into the welding residual stress and the development of effective methods to mitigate these stresses, thereby enhancing structural integrity. In this work, a finite element girth-butt welding model was developed to predict the residual stress of X80 pipelines. The residual stress relief resulting from local post-weld heat treatment (PWHT) was simulated based on the Norton creep model applicable to X80 steel. The simulation results, encompassing the residual stress both before and after PWHT, were validated through blind-hole drilling measurements. The results demonstrate that the welding residual stresses across all orientations were significantly reduced following PWHT, with a maximum stress reduction of approximately 360 MPa. The primary mechanical mechanism for residual stress relief was identified as high-temperature creep, and it was concluded that the PWHT alleviated welding residual stress effectively when the heating temperature exceeded the creep activation temperature. The consistency between the finite element analysis results and the experimentally measured residual stresses affirms the validity and feasibility of the finite-element-based approach for predicting welding residual stresses.</div></div>","PeriodicalId":49435,"journal":{"name":"Thin-Walled Structures","volume":"205 ","pages":"Article 112597"},"PeriodicalIF":5.7000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Thin-Walled Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0263823124010371","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
The residual stress in girth-butt weld presents safety risks for large-diameter oil-gas pipelines, necessitating an in-depth investigation into the welding residual stress and the development of effective methods to mitigate these stresses, thereby enhancing structural integrity. In this work, a finite element girth-butt welding model was developed to predict the residual stress of X80 pipelines. The residual stress relief resulting from local post-weld heat treatment (PWHT) was simulated based on the Norton creep model applicable to X80 steel. The simulation results, encompassing the residual stress both before and after PWHT, were validated through blind-hole drilling measurements. The results demonstrate that the welding residual stresses across all orientations were significantly reduced following PWHT, with a maximum stress reduction of approximately 360 MPa. The primary mechanical mechanism for residual stress relief was identified as high-temperature creep, and it was concluded that the PWHT alleviated welding residual stress effectively when the heating temperature exceeded the creep activation temperature. The consistency between the finite element analysis results and the experimentally measured residual stresses affirms the validity and feasibility of the finite-element-based approach for predicting welding residual stresses.
期刊介绍:
Thin-walled structures comprises an important and growing proportion of engineering construction with areas of application becoming increasingly diverse, ranging from aircraft, bridges, ships and oil rigs to storage vessels, industrial buildings and warehouses.
Many factors, including cost and weight economy, new materials and processes and the growth of powerful methods of analysis have contributed to this growth, and led to the need for a journal which concentrates specifically on structures in which problems arise due to the thinness of the walls. This field includes cold– formed sections, plate and shell structures, reinforced plastics structures and aluminium structures, and is of importance in many branches of engineering.
The primary criterion for consideration of papers in Thin–Walled Structures is that they must be concerned with thin–walled structures or the basic problems inherent in thin–walled structures. Provided this criterion is satisfied no restriction is placed on the type of construction, material or field of application. Papers on theory, experiment, design, etc., are published and it is expected that many papers will contain aspects of all three.