{"title":"Characterization of affine Gm-surfaces of hyperbolic type","authors":"Andriy Regeta","doi":"10.1016/j.jpaa.2024.107829","DOIUrl":null,"url":null,"abstract":"<div><div>In this note we extend the result from <span><span>[14]</span></span> and prove that if <em>S</em> is an affine non-toric <span><math><msub><mrow><mi>G</mi></mrow><mrow><mi>m</mi></mrow></msub></math></span>-surface of hyperbolic type that admits a <span><math><msub><mrow><mi>G</mi></mrow><mrow><mi>a</mi></mrow></msub></math></span>-action and <em>X</em> is an affine irreducible variety such that <span><math><mi>Aut</mi><mo>(</mo><mi>X</mi><mo>)</mo></math></span> is isomorphic to <span><math><mi>Aut</mi><mo>(</mo><mi>S</mi><mo>)</mo></math></span> as an abstract group, then <em>X</em> is a <span><math><msub><mrow><mi>G</mi></mrow><mrow><mi>m</mi></mrow></msub></math></span>-surface of hyperbolic type. Further, we show that a smooth Danielewski surface <span><math><msub><mrow><mi>D</mi></mrow><mrow><mi>p</mi></mrow></msub><mo>=</mo><mo>{</mo><mi>x</mi><mi>y</mi><mo>=</mo><mi>p</mi><mo>(</mo><mi>z</mi><mo>)</mo><mo>}</mo><mo>⊂</mo><msup><mrow><mi>A</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span>, where <em>p</em> has no multiple roots, is determined by its automorphism group seen as an ind-group in the category of affine irreducible varieties.</div></div>","PeriodicalId":54770,"journal":{"name":"Journal of Pure and Applied Algebra","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pure and Applied Algebra","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022404924002263","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
In this note we extend the result from [14] and prove that if S is an affine non-toric -surface of hyperbolic type that admits a -action and X is an affine irreducible variety such that is isomorphic to as an abstract group, then X is a -surface of hyperbolic type. Further, we show that a smooth Danielewski surface , where p has no multiple roots, is determined by its automorphism group seen as an ind-group in the category of affine irreducible varieties.
在本注释中,我们扩展了 [14] 的结果,证明如果 S 是双曲型的仿射非簇状 Gm 曲面,且允许 Ga 作用,而 X 是仿射不可还原变种,使得 Aut(X) 与作为抽象群的 Aut(S) 同构,则 X 是双曲型的 Gm 曲面。此外,我们还证明了光滑的丹尼列夫斯基曲面 Dp={xy=p(z)}⊂A3(其中 p 没有多根)是由它的自形群决定的,这个自形群被视为仿射不可还原变种范畴中的一个内群。
期刊介绍:
The Journal of Pure and Applied Algebra concentrates on that part of algebra likely to be of general mathematical interest: algebraic results with immediate applications, and the development of algebraic theories of sufficiently general relevance to allow for future applications.