Hulin Gao , Jian Liu , Jiamei Hao , Xu Bai , Runpeng Liao
{"title":"Novel synergistic mechanism of oxalic acid -CMC at the solid-liquid interface: For selective depression of talc from chalcopyrite","authors":"Hulin Gao , Jian Liu , Jiamei Hao , Xu Bai , Runpeng Liao","doi":"10.1016/j.surfin.2024.105345","DOIUrl":null,"url":null,"abstract":"<div><div>Flotation separation of chalcopyrite and talc is challenging due to their surface hydrophobicity, requiring a selective depressant for talc to achieve high-quality copper concentrate. This study is the first to use oxalic acid (OA) and carboxymethyl cellulose (CMC) as combined depressants for talc, and investigated the depression mechanism through flotation tests and various analysis techniques. Mixed minerals-flotation results showed that with 60+60 mg/L OA+CMC, talc was strongly depressed (10.16% recovery) with slight chalcopyrite (86.54% recovery) impact. The selective depression effect of OA+CMC was further verified through actual ore flotation experiments. Contact angle and zeta potential test indicated that OA+CMC significantly increased the hydrophobicity difference between talc and chalcopyrite surfaces. Adsorption capacity and atomic force microscope(AFM) results further confirmed that OA promotes CMC adsorption on talc surface, forming a dense CMC layer, whereas CMC adsorption on chalcopyrite was relatively low. Scanning electron microscope energy spectrum spectroscopy (SEM-EDS), fourier transform infrared spectroscopy(FTIR), and molecular dynamics (MD) results indicate that the synergistic depression mechanism of OA and CMC involves the formation of multiple adsorption layers at the solid-liquid interface, leading to an increased presence of hydrophilic groups on the talc surface, which results in its depression.</div></div>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":null,"pages":null},"PeriodicalIF":8.3000,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468023024015013","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Flotation separation of chalcopyrite and talc is challenging due to their surface hydrophobicity, requiring a selective depressant for talc to achieve high-quality copper concentrate. This study is the first to use oxalic acid (OA) and carboxymethyl cellulose (CMC) as combined depressants for talc, and investigated the depression mechanism through flotation tests and various analysis techniques. Mixed minerals-flotation results showed that with 60+60 mg/L OA+CMC, talc was strongly depressed (10.16% recovery) with slight chalcopyrite (86.54% recovery) impact. The selective depression effect of OA+CMC was further verified through actual ore flotation experiments. Contact angle and zeta potential test indicated that OA+CMC significantly increased the hydrophobicity difference between talc and chalcopyrite surfaces. Adsorption capacity and atomic force microscope(AFM) results further confirmed that OA promotes CMC adsorption on talc surface, forming a dense CMC layer, whereas CMC adsorption on chalcopyrite was relatively low. Scanning electron microscope energy spectrum spectroscopy (SEM-EDS), fourier transform infrared spectroscopy(FTIR), and molecular dynamics (MD) results indicate that the synergistic depression mechanism of OA and CMC involves the formation of multiple adsorption layers at the solid-liquid interface, leading to an increased presence of hydrophilic groups on the talc surface, which results in its depression.
期刊介绍:
ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.