Tim Kobelt, Martin Lippmann, Alexander Nitschke, Lou Kielhorn, Stefan Zimmermann
{"title":"An open source isolated data acquisition with trigger pulse generation for ion mobility spectrometry","authors":"Tim Kobelt, Martin Lippmann, Alexander Nitschke, Lou Kielhorn, Stefan Zimmermann","doi":"10.1016/j.ohx.2024.e00600","DOIUrl":null,"url":null,"abstract":"<div><div>Ion mobility spectrometers (IMS) are used in a wide variety of applications, including trace gas detection in safety and security applications, but also in more analytical applications, e.g., in medicine or food quality monitoring. Consequently, IMS are often coupled with other separation techniques and laboratory equipment, requiring synchronization between the external equipment and the IMS electronics. In addition, IMS and the associated electronics are becoming increasingly complex due to ongoing instrumental developments. In this work, we present an open source data acquisition hardware tailored to the requirements of advanced IMS, but also applicable to other applications. The data acquisition hardware provides trigger pulses for synchronized operation of the IMS ion gate or external devices. In addition, the data acquisition hardware allows for parallel digitalization using two isolated 16-bit analog-to-digital converters (ADC) with up to 250<!--> <!-->kilosamples per second. The galvanically isolated trigger input ensures a synchronized start of the IMS measurements, particularly when connecting external instrumentation such as a gas chromatograph. Furthermore, due to the isolated ADCs, the hardware allows great flexibility in defining the ground potential of the instrument setup.</div></div>","PeriodicalId":37503,"journal":{"name":"HardwareX","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"HardwareX","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468067224000944","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Ion mobility spectrometers (IMS) are used in a wide variety of applications, including trace gas detection in safety and security applications, but also in more analytical applications, e.g., in medicine or food quality monitoring. Consequently, IMS are often coupled with other separation techniques and laboratory equipment, requiring synchronization between the external equipment and the IMS electronics. In addition, IMS and the associated electronics are becoming increasingly complex due to ongoing instrumental developments. In this work, we present an open source data acquisition hardware tailored to the requirements of advanced IMS, but also applicable to other applications. The data acquisition hardware provides trigger pulses for synchronized operation of the IMS ion gate or external devices. In addition, the data acquisition hardware allows for parallel digitalization using two isolated 16-bit analog-to-digital converters (ADC) with up to 250 kilosamples per second. The galvanically isolated trigger input ensures a synchronized start of the IMS measurements, particularly when connecting external instrumentation such as a gas chromatograph. Furthermore, due to the isolated ADCs, the hardware allows great flexibility in defining the ground potential of the instrument setup.
HardwareXEngineering-Industrial and Manufacturing Engineering
CiteScore
4.10
自引率
18.20%
发文量
124
审稿时长
24 weeks
期刊介绍:
HardwareX is an open access journal established to promote free and open source designing, building and customizing of scientific infrastructure (hardware). HardwareX aims to recognize researchers for the time and effort in developing scientific infrastructure while providing end-users with sufficient information to replicate and validate the advances presented. HardwareX is open to input from all scientific, technological and medical disciplines. Scientific infrastructure will be interpreted in the broadest sense. Including hardware modifications to existing infrastructure, sensors and tools that perform measurements and other functions outside of the traditional lab setting (such as wearables, air/water quality sensors, and low cost alternatives to existing tools), and the creation of wholly new tools for either standard or novel laboratory tasks. Authors are encouraged to submit hardware developments that address all aspects of science, not only the final measurement, for example, enhancements in sample preparation and handling, user safety, and quality control. The use of distributed digital manufacturing strategies (e.g. 3-D printing) is encouraged. All designs must be submitted under an open hardware license.