Process control and design of drying technologies for biopharmaceuticals – A review

IF 4.5 2区 工程技术 Q2 ENGINEERING, CHEMICAL
Wiktoria Brytan , Rodrigo Amorim , Luis Padrela
{"title":"Process control and design of drying technologies for biopharmaceuticals – A review","authors":"Wiktoria Brytan ,&nbsp;Rodrigo Amorim ,&nbsp;Luis Padrela","doi":"10.1016/j.powtec.2024.120395","DOIUrl":null,"url":null,"abstract":"<div><div>Research into the production of solid-state biomolecules has increased in the last decade, uncovering new routes of administration and enhanced product stability. Freeze drying is the most common industrial method for biomolecule dehydration, however it requires long processing times and does not allow for particle engineering. Hence, new drying techniques are constantly being developed to produce dried biopharmaceuticals, facilitating the switch from batch to continuous manufacturing and improving control over particle attributes. The sensitive nature of biological products requires comprehensive optimisation of these new methods against the various degradative stresses imposed by drying. Process control and optimisation is key in minimizing many of these stresses, allowing production of dried powders with pre-determined characteristics (e.g. particle morphology, size and density). In this review, we provide a detailed overview of current methods used to date for the drying of biologics and the particle engineering capabilities of these methods, along with the process control possibilities that emerge with process analytical technology (PAT). We also look at the extent of mass and energy balances informing process optimisation and the effect of process controls on biomolecule stability, drying efficiency, and particle engineering.</div></div>","PeriodicalId":407,"journal":{"name":"Powder Technology","volume":"449 ","pages":"Article 120395"},"PeriodicalIF":4.5000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Powder Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0032591024010398","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Research into the production of solid-state biomolecules has increased in the last decade, uncovering new routes of administration and enhanced product stability. Freeze drying is the most common industrial method for biomolecule dehydration, however it requires long processing times and does not allow for particle engineering. Hence, new drying techniques are constantly being developed to produce dried biopharmaceuticals, facilitating the switch from batch to continuous manufacturing and improving control over particle attributes. The sensitive nature of biological products requires comprehensive optimisation of these new methods against the various degradative stresses imposed by drying. Process control and optimisation is key in minimizing many of these stresses, allowing production of dried powders with pre-determined characteristics (e.g. particle morphology, size and density). In this review, we provide a detailed overview of current methods used to date for the drying of biologics and the particle engineering capabilities of these methods, along with the process control possibilities that emerge with process analytical technology (PAT). We also look at the extent of mass and energy balances informing process optimisation and the effect of process controls on biomolecule stability, drying efficiency, and particle engineering.

Abstract Image

生物制药干燥技术的过程控制和设计 - 综述
近十年来,固态生物大分子的生产研究与日俱增,发现了新的给药途径并提高了产品的稳定性。冷冻干燥是生物分子脱水最常用的工业方法,但这种方法需要较长的加工时间,而且无法进行颗粒工程。因此,人们不断开发新的干燥技术,以生产干燥的生物制药,促进从批量生产到连续生产的转变,并改善对颗粒属性的控制。生物产品的敏感性要求对这些新方法进行全面优化,以应对干燥带来的各种降解压力。工艺控制和优化是最大限度地减少其中许多应力的关键,这样才能生产出具有预定特性(如颗粒形态、大小和密度)的干燥粉末。在本综述中,我们将详细介绍迄今为止用于生物制剂干燥的现有方法、这些方法的颗粒工程能力以及工艺分析技术 (PAT) 带来的工艺控制可能性。我们还探讨了质量和能量平衡对工艺优化的影响,以及工艺控制对生物大分子稳定性、干燥效率和颗粒工程学的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Powder Technology
Powder Technology 工程技术-工程:化工
CiteScore
9.90
自引率
15.40%
发文量
1047
审稿时长
46 days
期刊介绍: Powder Technology is an International Journal on the Science and Technology of Wet and Dry Particulate Systems. Powder Technology publishes papers on all aspects of the formation of particles and their characterisation and on the study of systems containing particulate solids. No limitation is imposed on the size of the particles, which may range from nanometre scale, as in pigments or aerosols, to that of mined or quarried materials. The following list of topics is not intended to be comprehensive, but rather to indicate typical subjects which fall within the scope of the journal's interests: Formation and synthesis of particles by precipitation and other methods. Modification of particles by agglomeration, coating, comminution and attrition. Characterisation of the size, shape, surface area, pore structure and strength of particles and agglomerates (including the origins and effects of inter particle forces). Packing, failure, flow and permeability of assemblies of particles. Particle-particle interactions and suspension rheology. Handling and processing operations such as slurry flow, fluidization, pneumatic conveying. Interactions between particles and their environment, including delivery of particulate products to the body. Applications of particle technology in production of pharmaceuticals, chemicals, foods, pigments, structural, and functional materials and in environmental and energy related matters. For materials-oriented contributions we are looking for articles revealing the effect of particle/powder characteristics (size, morphology and composition, in that order) on material performance or functionality and, ideally, comparison to any industrial standard.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信