{"title":"On fractional Orlicz-Hardy inequalities","authors":"T.V. Anoop , Prosenjit Roy , Subhajit Roy","doi":"10.1016/j.jmaa.2024.128980","DOIUrl":null,"url":null,"abstract":"<div><div>We establish the weighted fractional Orlicz-Hardy inequalities for various Young functions satisfying the <span><math><msub><mrow><mo>△</mo></mrow><mrow><mn>2</mn></mrow></msub></math></span>-condition. Further, we identify the critical cases for such Young function and prove the weighted fractional Orlicz-Hardy inequalities with logarithmic correction. Moreover, we discuss the analogous results in the local case. In the process, for any Young function Φ satisfying the <span><math><msub><mrow><mo>△</mo></mrow><mrow><mn>2</mn></mrow></msub></math></span>-condition and for any <span><math><mi>Λ</mi><mo>></mo><mn>1</mn></math></span>, the following inequality is established<span><span><span><math><mi>Φ</mi><mo>(</mo><mi>a</mi><mo>+</mo><mi>b</mi><mo>)</mo><mo>≤</mo><mi>λ</mi><mi>Φ</mi><mo>(</mo><mi>a</mi><mo>)</mo><mo>+</mo><mfrac><mrow><mi>C</mi><mo>(</mo><mi>Φ</mi><mo>,</mo><mi>Λ</mi><mo>)</mo></mrow><mrow><msup><mrow><mo>(</mo><mi>λ</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow><mrow><msubsup><mrow><mi>p</mi></mrow><mrow><mi>Φ</mi></mrow><mrow><mo>+</mo></mrow></msubsup><mo>−</mo><mn>1</mn></mrow></msup></mrow></mfrac><mi>Φ</mi><mo>(</mo><mi>b</mi><mo>)</mo><mo>,</mo><mspace></mspace><mspace></mspace><mspace></mspace><mo>∀</mo><mspace></mspace><mi>a</mi><mo>,</mo><mi>b</mi><mo>∈</mo><mo>[</mo><mn>0</mn><mo>,</mo><mo>∞</mo><mo>)</mo><mo>,</mo><mspace></mspace><mo>∀</mo><mspace></mspace><mi>λ</mi><mo>∈</mo><mo>(</mo><mn>1</mn><mo>,</mo><mi>Λ</mi><mo>]</mo><mo>,</mo></math></span></span></span> where <span><math><msubsup><mrow><mi>p</mi></mrow><mrow><mi>Φ</mi></mrow><mrow><mo>+</mo></mrow></msubsup><mo>:</mo><mo>=</mo><mi>sup</mi><mo></mo><mo>{</mo><mi>t</mi><mi>φ</mi><mo>(</mo><mi>t</mi><mo>)</mo><mo>/</mo><mi>Φ</mi><mo>(</mo><mi>t</mi><mo>)</mo><mo>:</mo><mi>t</mi><mo>></mo><mn>0</mn><mo>}</mo></math></span>, <em>φ</em> is the right derivatives of Φ and <span><math><mi>C</mi><mo>(</mo><mi>Φ</mi><mo>,</mo><mi>Λ</mi><mo>)</mo></math></span> is a positive constant that depends only on Φ and Λ.</div></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X24009028","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
We establish the weighted fractional Orlicz-Hardy inequalities for various Young functions satisfying the -condition. Further, we identify the critical cases for such Young function and prove the weighted fractional Orlicz-Hardy inequalities with logarithmic correction. Moreover, we discuss the analogous results in the local case. In the process, for any Young function Φ satisfying the -condition and for any , the following inequality is established where , φ is the right derivatives of Φ and is a positive constant that depends only on Φ and Λ.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.