Compact embedding from variable-order Sobolev space to Lq(x)(Ω) and its application to Choquard equation with variable order and variable critical exponent
{"title":"Compact embedding from variable-order Sobolev space to Lq(x)(Ω) and its application to Choquard equation with variable order and variable critical exponent","authors":"Masaki Sakuma","doi":"10.1016/j.jmaa.2024.128999","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we prove the compact embedding from the variable-order Sobolev space <span><math><msubsup><mrow><mi>W</mi></mrow><mrow><mn>0</mn></mrow><mrow><mi>s</mi><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo><mo>,</mo><mi>p</mi><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo></mrow></msubsup><mo>(</mo><mi>Ω</mi><mo>)</mo></math></span> to the Nakano space <span><math><msup><mrow><mi>L</mi></mrow><mrow><mi>q</mi><mo>(</mo><mi>x</mi><mo>)</mo></mrow></msup><mo>(</mo><mi>Ω</mi><mo>)</mo></math></span> with a critical exponent <span><math><mi>q</mi><mo>(</mo><mi>x</mi><mo>)</mo></math></span> satisfying some conditions. It is noteworthy that the embedding can be compact even when <span><math><mi>q</mi><mo>(</mo><mi>x</mi><mo>)</mo></math></span> reaches the critical Sobolev exponent <span><math><msubsup><mrow><mi>p</mi></mrow><mrow><mi>s</mi></mrow><mrow><mo>⁎</mo></mrow></msubsup><mo>(</mo><mi>x</mi><mo>)</mo></math></span>. As an application, we obtain a nontrivial solution of the Choquard equation<span><span><span><math><msubsup><mrow><mo>(</mo><mo>−</mo><mi>Δ</mi><mo>)</mo></mrow><mrow><mi>p</mi><mo>(</mo><mo>⋅</mo><mo>,</mo><mo>⋅</mo><mo>)</mo></mrow><mrow><mi>s</mi><mo>(</mo><mo>⋅</mo><mo>,</mo><mo>⋅</mo><mo>)</mo></mrow></msubsup><mi>u</mi><mo>+</mo><mo>|</mo><mi>u</mi><msup><mrow><mo>|</mo></mrow><mrow><mi>p</mi><mo>(</mo><mi>x</mi><mo>,</mo><mi>x</mi><mo>)</mo><mo>−</mo><mn>2</mn></mrow></msup><mi>u</mi><mo>=</mo><mrow><mo>(</mo><munder><mo>∫</mo><mrow><mi>Ω</mi></mrow></munder><mfrac><mrow><mo>|</mo><mi>u</mi><mo>(</mo><mi>y</mi><mo>)</mo><msup><mrow><mo>|</mo></mrow><mrow><mi>r</mi><mo>(</mo><mi>y</mi><mo>)</mo></mrow></msup></mrow><mrow><mo>|</mo><mi>x</mi><mo>−</mo><mi>y</mi><msup><mrow><mo>|</mo></mrow><mrow><mfrac><mrow><mi>α</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>+</mo><mi>α</mi><mo>(</mo><mi>y</mi><mo>)</mo></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></msup></mrow></mfrac><mi>d</mi><mi>y</mi><mo>)</mo></mrow><mo>|</mo><mi>u</mi><mo>(</mo><mi>x</mi><mo>)</mo><msup><mrow><mo>|</mo></mrow><mrow><mi>r</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>−</mo><mn>2</mn></mrow></msup><mi>u</mi><mo>(</mo><mi>x</mi><mo>)</mo><mspace></mspace><mrow><mtext>in </mtext><mi>Ω</mi></mrow></math></span></span></span> with variable upper critical exponent in the sense of Hardy-Littlewood-Sobolev inequality under an appropriate boundary condition.</div></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X24009211","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we prove the compact embedding from the variable-order Sobolev space to the Nakano space with a critical exponent satisfying some conditions. It is noteworthy that the embedding can be compact even when reaches the critical Sobolev exponent . As an application, we obtain a nontrivial solution of the Choquard equation with variable upper critical exponent in the sense of Hardy-Littlewood-Sobolev inequality under an appropriate boundary condition.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.