The centralizer of a locally nilpotent R-derivation of the polynomial R-algebra in two variables

IF 0.7 2区 数学 Q2 MATHEMATICS
M'hammed El Kahoui, Najoua Essamaoui, Mustapha Ouali
{"title":"The centralizer of a locally nilpotent R-derivation of the polynomial R-algebra in two variables","authors":"M'hammed El Kahoui,&nbsp;Najoua Essamaoui,&nbsp;Mustapha Ouali","doi":"10.1016/j.jpaa.2024.107828","DOIUrl":null,"url":null,"abstract":"<div><div>Let <em>R</em> be an integral domain containing <span><math><mi>Q</mi></math></span> and <em>ξ</em> be an irreducible nontrivial locally nilpotent <em>R</em>-derivation of the polynomial <em>R</em>-algebra <em>A</em> in two variables. In this paper we investigate the group <span><math><msub><mrow><mi>Aut</mi></mrow><mrow><mi>R</mi></mrow></msub><mo>(</mo><mi>A</mi><mo>,</mo><mi>ξ</mi><mo>)</mo></math></span> of <em>R</em>-automorphisms of <em>A</em> which commute with <em>ξ</em>. In the case <em>R</em> is a unique factorization domain and the plinth ideal of <em>ξ</em> is principal we give a complete description of the subgroup <span><math><msub><mrow><mi>SAut</mi></mrow><mrow><mi>R</mi></mrow></msub><mo>(</mo><mi>A</mi><mo>,</mo><mi>ξ</mi><mo>)</mo></math></span> of <span><math><msub><mrow><mi>Aut</mi></mrow><mrow><mi>R</mi></mrow></msub><mo>(</mo><mi>A</mi><mo>,</mo><mi>ξ</mi><mo>)</mo></math></span> consisting of Jacobian one automorphisms. If moreover <em>R</em> contains a field <em>K</em> such that the group of units of <em>R</em> is <span><math><msup><mrow><mi>K</mi></mrow><mrow><mo>⋆</mo></mrow></msup></math></span> we prove that <span><math><msub><mrow><mi>Aut</mi></mrow><mrow><mi>R</mi></mrow></msub><mo>(</mo><mi>A</mi><mo>,</mo><mi>ξ</mi><mo>)</mo><mo>=</mo><msub><mrow><mi>SAut</mi></mrow><mrow><mi>R</mi></mrow></msub><mo>(</mo><mi>A</mi><mo>,</mo><mi>ξ</mi><mo>)</mo></math></span>.</div></div>","PeriodicalId":54770,"journal":{"name":"Journal of Pure and Applied Algebra","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pure and Applied Algebra","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022404924002251","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let R be an integral domain containing Q and ξ be an irreducible nontrivial locally nilpotent R-derivation of the polynomial R-algebra A in two variables. In this paper we investigate the group AutR(A,ξ) of R-automorphisms of A which commute with ξ. In the case R is a unique factorization domain and the plinth ideal of ξ is principal we give a complete description of the subgroup SAutR(A,ξ) of AutR(A,ξ) consisting of Jacobian one automorphisms. If moreover R contains a field K such that the group of units of R is K we prove that AutR(A,ξ)=SAutR(A,ξ).
二变量多项式 R 代数的局部零势 R 派生的中心子
设 R 是包含 Q 的积分域,ξ 是两变量多项式 R 代数 A 的不可还原的非琐局部无穷 R 衍射。在本文中,我们将研究与ξ换元的 A 的 R 自变量群 AutR(A,ξ)。在 R 是唯一因式分解域且 ξ 的柱顶理想是主理想的情况下,我们给出了 AutR(A,ξ) 的子群 SAutR(A,ξ) 的完整描述,该子群由雅各布一自形化组成。如果 R 还包含一个域 K,使得 R 的单位群是 K⋆,我们就可以证明 AutR(A,ξ)=SAutR(A,ξ)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.70
自引率
12.50%
发文量
225
审稿时长
17 days
期刊介绍: The Journal of Pure and Applied Algebra concentrates on that part of algebra likely to be of general mathematical interest: algebraic results with immediate applications, and the development of algebraic theories of sufficiently general relevance to allow for future applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信