Purification, structural analysis, and hypoglycemic activity of Auricularia auricula-judae polysaccharides extracted with natural deep eutectic solvents

IF 3.8 2区 农林科学 Q2 FOOD SCIENCE & TECHNOLOGY
Yemei Dai , Yujing He , Yuan Ma, Xuan Yang, Yongli Huang, Hongmei Min, Xiaocui Liu
{"title":"Purification, structural analysis, and hypoglycemic activity of Auricularia auricula-judae polysaccharides extracted with natural deep eutectic solvents","authors":"Yemei Dai ,&nbsp;Yujing He ,&nbsp;Yuan Ma,&nbsp;Xuan Yang,&nbsp;Yongli Huang,&nbsp;Hongmei Min,&nbsp;Xiaocui Liu","doi":"10.1016/j.jff.2024.106524","DOIUrl":null,"url":null,"abstract":"<div><div>The <em>in vitro</em> research found that <em>Auricularia auricula-judae (A. auricula</em>) crude polysaccharides showed hypoglycemic and antioxidant properties, whereas purified polysaccharides were more effective. <em>A. auricula</em> polysaccharide was identified as a typical heteropolysaccharide, with a pyran-type sugar ring coupled via α- and β-type glycosidic linkage. The monosaccharide composition includes Man, Xyl, Ara, Glc, Rha, and galactose (Gal), at a molar ratio of 61.36:37.92:36.27:25.79:24.30:20.38, while also containing a small amount of galacturonic and glucuronic acid. <em>A. auricula</em> polysaccharide showed smooth, flaky structures, with a small portion exhibiting a filamentous and spherical morphology. <em>A. auricula</em> polysaccharides activate glycogen synthetase kinase 3β (GSK3β) phosphorylation, leading to increased hepatic glycogen production, and they reduce glucose synthesis and lower blood sugar levels by decreasing phosphoenolpyruvate carboxykinase (PEPCK) and glucose-6-phosphatase (G6Pase) enzyme activity, and enhancing FOXO1 phosphorylation. The findings suggested that <em>A. auricula</em> polysaccharides could be used as natural hypoglycemic agents.</div></div>","PeriodicalId":360,"journal":{"name":"Journal of Functional Foods","volume":"122 ","pages":"Article 106524"},"PeriodicalIF":3.8000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Foods","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1756464624005267","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The in vitro research found that Auricularia auricula-judae (A. auricula) crude polysaccharides showed hypoglycemic and antioxidant properties, whereas purified polysaccharides were more effective. A. auricula polysaccharide was identified as a typical heteropolysaccharide, with a pyran-type sugar ring coupled via α- and β-type glycosidic linkage. The monosaccharide composition includes Man, Xyl, Ara, Glc, Rha, and galactose (Gal), at a molar ratio of 61.36:37.92:36.27:25.79:24.30:20.38, while also containing a small amount of galacturonic and glucuronic acid. A. auricula polysaccharide showed smooth, flaky structures, with a small portion exhibiting a filamentous and spherical morphology. A. auricula polysaccharides activate glycogen synthetase kinase 3β (GSK3β) phosphorylation, leading to increased hepatic glycogen production, and they reduce glucose synthesis and lower blood sugar levels by decreasing phosphoenolpyruvate carboxykinase (PEPCK) and glucose-6-phosphatase (G6Pase) enzyme activity, and enhancing FOXO1 phosphorylation. The findings suggested that A. auricula polysaccharides could be used as natural hypoglycemic agents.

Abstract Image

用天然深共晶溶剂提取的 Auricularia auricula-judae 多糖的纯化、结构分析和降血糖活性
体外研究发现,Auricularia auricula-judae(A. auricula)粗多糖具有降血糖和抗氧化特性,而纯化的多糖则更有效。经鉴定,枳实多糖是一种典型的杂多糖,由吡喃型糖环通过α型和β型糖苷键连接而成。单糖成分包括 Man、Xyl、Ara、Glc、Rha 和半乳糖(Gal),摩尔比为 61.36:37.92:36.27:25.79:24.30:20.38,同时还含有少量半乳糖醛酸和葡萄糖醛酸。金盏花多糖呈光滑的片状结构,小部分呈丝状和球状形态。枳壳多糖能激活糖原合成酶激酶 3β (GSK3β)的磷酸化,导致肝糖原生成增加,并通过降低磷酸烯醇丙酮酸羧激酶(PEPCK)和葡萄糖-6-磷酸酶(G6Pase)的酶活性,增强 FOXO1 的磷酸化,从而减少葡萄糖合成,降低血糖水平。研究结果表明,枳壳多糖可用作天然降血糖药。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Functional Foods
Journal of Functional Foods FOOD SCIENCE & TECHNOLOGY-
CiteScore
9.60
自引率
1.80%
发文量
428
审稿时长
76 days
期刊介绍: Journal of Functional Foods continues with the same aims and scope, editorial team, submission system and rigorous peer review. We give authors the possibility to publish their top-quality papers in a well-established leading journal in the food and nutrition fields. The Journal will keep its rigorous criteria to screen high impact research addressing relevant scientific topics and performed by sound methodologies. The Journal of Functional Foods aims to bring together the results of fundamental and applied research into healthy foods and biologically active food ingredients. The Journal is centered in the specific area at the boundaries among food technology, nutrition and health welcoming papers having a good interdisciplinary approach. The Journal will cover the fields of plant bioactives; dietary fibre, probiotics; functional lipids; bioactive peptides; vitamins, minerals and botanicals and other dietary supplements. Nutritional and technological aspects related to the development of functional foods and beverages are of core interest to the journal. Experimental works dealing with food digestion, bioavailability of food bioactives and on the mechanisms by which foods and their components are able to modulate physiological parameters connected with disease prevention are of particular interest as well as those dealing with personalized nutrition and nutritional needs in pathological subjects.
文献相关原料
公司名称 产品信息 采购帮参考价格
上海源叶 α-glucosidase
上海源叶 hydroxyl
上海源叶 α-glucosidase
上海源叶 DPPH
上海源叶 DPPH
上海源叶 D-galactose standard
上海源叶 D-galactose standard
上海源叶 Sephadex G-200 Glucan gel column
上海源叶 ABTS+
上海源叶 ABTS+
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信