{"title":"Exploring semisolid liquid metal anode for lithium-ion battery","authors":"Pisong Cui , Huimin Liu , Xunyong Jiang","doi":"10.1016/j.nxener.2024.100206","DOIUrl":null,"url":null,"abstract":"<div><div>Due to their high surface tension and mobility, liquid metals present a challenge for direct coating onto current collectors. Herein, the researchers prepared a semisolid liquid metal by mixing GaInSn liquid metal with copper particle fillers. This semisolid liquid metal's viscosity is suitable for coating and strongly bonding with the current collector without a binder. Though promising, the lithium storage performance of such semisolid liquid metals has remained largely unexplored. The electrodes displayed favorable electrical conductivity and a high initial discharge capacity of 214 mAh g<sup>−1</sup>. Their discharge process involved a self-healing mechanism through the liquid-state transformation of the active component, analogous to metallic liquid systems. This work overcame the persistent liquid metal coating difficulty by modulating viscosity while revealing their notable lithium storage capabilities.</div></div>","PeriodicalId":100957,"journal":{"name":"Next Energy","volume":"6 ","pages":"Article 100206"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Next Energy","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949821X2400111X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Due to their high surface tension and mobility, liquid metals present a challenge for direct coating onto current collectors. Herein, the researchers prepared a semisolid liquid metal by mixing GaInSn liquid metal with copper particle fillers. This semisolid liquid metal's viscosity is suitable for coating and strongly bonding with the current collector without a binder. Though promising, the lithium storage performance of such semisolid liquid metals has remained largely unexplored. The electrodes displayed favorable electrical conductivity and a high initial discharge capacity of 214 mAh g−1. Their discharge process involved a self-healing mechanism through the liquid-state transformation of the active component, analogous to metallic liquid systems. This work overcame the persistent liquid metal coating difficulty by modulating viscosity while revealing their notable lithium storage capabilities.