On the eccentric connectivity index of trees with given domination number

IF 1 3区 数学 Q3 MATHEMATICS, APPLIED
{"title":"On the eccentric connectivity index of trees with given domination number","authors":"","doi":"10.1016/j.dam.2024.10.013","DOIUrl":null,"url":null,"abstract":"<div><div>Let <span><math><mi>G</mi></math></span> be a simple connected finite graph. The eccentric connectivity index (ECI) of <span><math><mi>G</mi></math></span> is defined as <span><math><mrow><msup><mrow><mi>ξ</mi></mrow><mrow><mi>c</mi></mrow></msup><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>=</mo><msub><mrow><mo>∑</mo></mrow><mrow><mi>v</mi><mo>∈</mo><mi>V</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></msub><msub><mrow><mi>ɛ</mi></mrow><mrow><mi>G</mi></mrow></msub><mrow><mo>(</mo><mi>v</mi><mo>)</mo></mrow><msub><mrow><mi>d</mi></mrow><mrow><mi>G</mi></mrow></msub><mrow><mo>(</mo><mi>v</mi><mo>)</mo></mrow></mrow></math></span>, where <span><math><mrow><msub><mrow><mi>ɛ</mi></mrow><mrow><mi>G</mi></mrow></msub><mrow><mo>(</mo><mi>v</mi><mo>)</mo></mrow></mrow></math></span> is the eccentricity of <span><math><mi>v</mi></math></span>, <span><math><mrow><msub><mrow><mi>d</mi></mrow><mrow><mi>G</mi></mrow></msub><mrow><mo>(</mo><mi>v</mi><mo>)</mo></mrow></mrow></math></span> is the degree of <span><math><mi>v</mi></math></span>. We denote the set of trees with order <span><math><mi>n</mi></math></span> and domination number <span><math><mi>γ</mi></math></span> by <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>γ</mi></mrow></msub></math></span>. In this paper, the extremal trees having the minimal ECI among <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>γ</mi></mrow></msub></math></span> are determined. The tree among <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>γ</mi></mrow></msub></math></span> satisfying <span><math><mrow><mn>2</mn><mo>≤</mo><mi>γ</mi><mo>≤</mo><mrow><mo>⌈</mo><mfrac><mrow><mi>n</mi></mrow><mrow><mn>3</mn></mrow></mfrac><mo>⌉</mo></mrow></mrow></math></span> having the maximal ECI is also characterized. For <span><math><mrow><mrow><mo>⌈</mo><mfrac><mrow><mi>n</mi></mrow><mrow><mn>3</mn></mrow></mfrac><mo>⌉</mo></mrow><mo>≤</mo><mi>γ</mi><mo>≤</mo><mfrac><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></math></span>, the tree among all caterpillars with domination number <span><math><mi>γ</mi></math></span> having the maximal ECI is determined.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166218X2400444X","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Let G be a simple connected finite graph. The eccentric connectivity index (ECI) of G is defined as ξc(G)=vV(G)ɛG(v)dG(v), where ɛG(v) is the eccentricity of v, dG(v) is the degree of v. We denote the set of trees with order n and domination number γ by Tn,γ. In this paper, the extremal trees having the minimal ECI among Tn,γ are determined. The tree among Tn,γ satisfying 2γn3 having the maximal ECI is also characterized. For n3γn2, the tree among all caterpillars with domination number γ having the maximal ECI is determined.
关于具有给定支配数的树木的偏心连通指数
设 G 是一个简单连通的有限图。G 的偏心连通指数(ECI)定义为ξc(G)=∑v∈V(G)ɛG(v)dG(v),其中ɛG(v)是 v 的偏心率,dG(v) 是 v 的度数。我们用 Tn,γ 表示阶数为 n、主宰数为 γ 的树集合。本文将确定 Tn,γ 中 ECI 最小的极值树。此外,本文还描述了 Tn,γ 中满足 2≤γ≤⌈n3⌉ 且具有最大 ECI 的树。对于⌈n3⌉≤γ≤n2,确定了具有最大 ECI 的支配数 γ 的所有毛虫中的树。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Discrete Applied Mathematics
Discrete Applied Mathematics 数学-应用数学
CiteScore
2.30
自引率
9.10%
发文量
422
审稿时长
4.5 months
期刊介绍: The aim of Discrete Applied Mathematics is to bring together research papers in different areas of algorithmic and applicable discrete mathematics as well as applications of combinatorial mathematics to informatics and various areas of science and technology. Contributions presented to the journal can be research papers, short notes, surveys, and possibly research problems. The "Communications" section will be devoted to the fastest possible publication of recent research results that are checked and recommended for publication by a member of the Editorial Board. The journal will also publish a limited number of book announcements as well as proceedings of conferences. These proceedings will be fully refereed and adhere to the normal standards of the journal. Potential authors are advised to view the journal and the open calls-for-papers of special issues before submitting their manuscripts. Only high-quality, original work that is within the scope of the journal or the targeted special issue will be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信