GMNI: Achieve good data augmentation in unsupervised graph contrastive learning

IF 6 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Xin Xiong , Xiangyu Wang , Suorong Yang , Furao Shen , Jian Zhao
{"title":"GMNI: Achieve good data augmentation in unsupervised graph contrastive learning","authors":"Xin Xiong ,&nbsp;Xiangyu Wang ,&nbsp;Suorong Yang ,&nbsp;Furao Shen ,&nbsp;Jian Zhao","doi":"10.1016/j.neunet.2024.106804","DOIUrl":null,"url":null,"abstract":"<div><div>Graph contrastive learning (GCL) shows excellent potential in unsupervised graph representation learning. Data augmentation (DA), responsible for generating diverse views, plays a vital role in GCL, and its optimal choice heavily depends on the downstream task. However, it is impossible to measure task-relevant information under an unsupervised setting. Therefore, many GCL methods risk insufficient information by failing to preserve essential information necessary for the downstream task or risk encoding redundant information. In this paper, we propose a novel method called <u>M</u>inimal <u>N</u>oteworthy <u>I</u>nformation for unsupervised <u>G</u>raph contrastive learning (GMNI), featuring automated DA. It achieves good DA by balancing missing and excessive information, approximating the optimal views in contrastive learning. We employ an adversarial training strategy to generate views that share minimal noteworthy information (MNI), reducing nuisance information by minimization optimization and ensuring sufficient information by emphasizing noteworthy information. Besides, we introduce randomness based on MNI to augmentation, thereby enhancing view diversity and stabilizing the model against perturbations. Extensive experiments on unsupervised and semi-supervised learning over 14 datasets demonstrate the superiority of GMNI over GCL methods with automated and manual DA. GMNI achieves up to a 1.64% improvement over the state-of-the-art in unsupervised node classification, up to a 1.97% improvement in unsupervised graph classification, and up to a 3.57% improvement in semi-supervised graph classification.</div></div>","PeriodicalId":49763,"journal":{"name":"Neural Networks","volume":"181 ","pages":"Article 106804"},"PeriodicalIF":6.0000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0893608024007287","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Graph contrastive learning (GCL) shows excellent potential in unsupervised graph representation learning. Data augmentation (DA), responsible for generating diverse views, plays a vital role in GCL, and its optimal choice heavily depends on the downstream task. However, it is impossible to measure task-relevant information under an unsupervised setting. Therefore, many GCL methods risk insufficient information by failing to preserve essential information necessary for the downstream task or risk encoding redundant information. In this paper, we propose a novel method called Minimal Noteworthy Information for unsupervised Graph contrastive learning (GMNI), featuring automated DA. It achieves good DA by balancing missing and excessive information, approximating the optimal views in contrastive learning. We employ an adversarial training strategy to generate views that share minimal noteworthy information (MNI), reducing nuisance information by minimization optimization and ensuring sufficient information by emphasizing noteworthy information. Besides, we introduce randomness based on MNI to augmentation, thereby enhancing view diversity and stabilizing the model against perturbations. Extensive experiments on unsupervised and semi-supervised learning over 14 datasets demonstrate the superiority of GMNI over GCL methods with automated and manual DA. GMNI achieves up to a 1.64% improvement over the state-of-the-art in unsupervised node classification, up to a 1.97% improvement in unsupervised graph classification, and up to a 3.57% improvement in semi-supervised graph classification.
GMNI: 在无监督图对比学习中实现良好的数据扩增效果
图形对比学习(GCL)在无监督图形表示学习中显示出了巨大的潜力。数据增强(DA)负责生成不同的视图,在 GCL 中起着至关重要的作用,其最佳选择在很大程度上取决于下游任务。然而,在无监督环境下,无法测量与任务相关的信息。因此,许多 GCL 方法都存在信息不足的风险,因为它们无法保留下游任务所需的基本信息,或者存在编码冗余信息的风险。在本文中,我们提出了一种名为 "用于无监督图形对比学习(GMNI)的最小值得注意信息 "的新方法,其特点是自动评估。它通过平衡缺失信息和过多信息来实现良好的DA,近似于对比学习中的最优视图。我们采用对抗训练策略来生成共享最小值得注意信息(MNI)的视图,通过最小化优化来减少干扰信息,并通过强调值得注意的信息来确保足够的信息。此外,我们还引入了基于 MNI 的随机性增强,从而提高了视图的多样性,并使模型在受到扰动时保持稳定。在 14 个数据集上进行的无监督和半监督学习的广泛实验证明,GMNI 在自动和手动 DA 方面优于 GCL 方法。在无监督节点分类中,GMNI 比最先进的方法最多提高了 1.64%;在无监督图分类中,GMNI 最多提高了 1.97%;在半监督图分类中,GMNI 最多提高了 3.57%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Neural Networks
Neural Networks 工程技术-计算机:人工智能
CiteScore
13.90
自引率
7.70%
发文量
425
审稿时长
67 days
期刊介绍: Neural Networks is a platform that aims to foster an international community of scholars and practitioners interested in neural networks, deep learning, and other approaches to artificial intelligence and machine learning. Our journal invites submissions covering various aspects of neural networks research, from computational neuroscience and cognitive modeling to mathematical analyses and engineering applications. By providing a forum for interdisciplinary discussions between biology and technology, we aim to encourage the development of biologically-inspired artificial intelligence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信