A frequency-independent bound on trigonometric polynomials of Gaussians and applications

IF 1.7 2区 数学 Q1 MATHEMATICS
Fanhao Kong , Wenhao Zhao
{"title":"A frequency-independent bound on trigonometric polynomials of Gaussians and applications","authors":"Fanhao Kong ,&nbsp;Wenhao Zhao","doi":"10.1016/j.jfa.2024.110705","DOIUrl":null,"url":null,"abstract":"<div><div>We prove a frequency-independent bound on trigonometric functions of a class of singular Gaussian random fields, which arise naturally from weak universality problems for singular stochastic PDEs. This enables us to reduce the regularity assumption on the nonlinearity of the microscopic models (for pathwise convergence) in KPZ and dynamical <span><math><msubsup><mrow><mi>Φ</mi></mrow><mrow><mn>3</mn></mrow><mrow><mn>4</mn></mrow></msubsup></math></span> in the previous works of Hairer-Xu and Furlan-Gubinelli to heuristically optimal thresholds required by PDE structures.</div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022123624003938","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We prove a frequency-independent bound on trigonometric functions of a class of singular Gaussian random fields, which arise naturally from weak universality problems for singular stochastic PDEs. This enables us to reduce the regularity assumption on the nonlinearity of the microscopic models (for pathwise convergence) in KPZ and dynamical Φ34 in the previous works of Hairer-Xu and Furlan-Gubinelli to heuristically optimal thresholds required by PDE structures.
与频率无关的高斯三角多项式约束及其应用
我们证明了一类奇异高斯随机场的三角函数与频率无关的约束,该约束自然产生于奇异随机 PDE 的弱普遍性问题。这使我们能够将海尔-徐(Hairer-Xu)和富兰-古比内利(Furlan-Gubinelli)先前研究中对 KPZ 和动力学 Φ34 中微观模型非线性(路径收敛性)的正则性假设简化为 PDE 结构所要求的启发式最优阈值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.20
自引率
5.90%
发文量
271
审稿时长
7.5 months
期刊介绍: The Journal of Functional Analysis presents original research papers in all scientific disciplines in which modern functional analysis plays a basic role. Articles by scientists in a variety of interdisciplinary areas are published. Research Areas Include: • Significant applications of functional analysis, including those to other areas of mathematics • New developments in functional analysis • Contributions to important problems in and challenges to functional analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信