Synthesis of nitrogen-doped mesoporous carbon nanospheres using urea-phenol-formaldehyde resin for efficient CO2 adsorption–desorption studies

Rasmeet Singh , Lizhuo Wang , Junhan Cheng , Haoyue Sun , Chunfei Wu , Jun Huang
{"title":"Synthesis of nitrogen-doped mesoporous carbon nanospheres using urea-phenol-formaldehyde resin for efficient CO2 adsorption–desorption studies","authors":"Rasmeet Singh ,&nbsp;Lizhuo Wang ,&nbsp;Junhan Cheng ,&nbsp;Haoyue Sun ,&nbsp;Chunfei Wu ,&nbsp;Jun Huang","doi":"10.1016/j.ccst.2024.100302","DOIUrl":null,"url":null,"abstract":"<div><div>Global warming led by excessive CO<sub>2</sub> emission is a significant challenge. CO<sub>2</sub> capture is recognised as an efficient way to mitigate this issue. In this study, we successfully synthesized a series of activation-free nitrogen-doped mesoporous carbon nanospheres (M<sub>x</sub>: where x is ratio of urea/phenol) via an aqueous synthesis route, using urea-phenol-formaldehyde resin as a precursor and triblock copolymer F127 as a soft template. These M<sub>x</sub> exhibited nitrogen contents ranging from 0.48 % to 1.52 % and with high surface areas within the range of 486.382 to 683.891 m²g⁻¹. Furthermore, they demonstrated a uniform pore channel diameter of around 3.2 nm. The incorporated nitrogen atoms primarily in the forms of pyrrolic, pyridine, and amine groups, offers abundant adsorption sites for CO<sub>2</sub>. The CO<sub>2</sub> adsorption and desorption performance of as-synthesized M<sub>x</sub> were systematically studied under various CO<sub>2</sub> feed concentrations, including 10 % CO<sub>2</sub> by volume, compressed air (mimicking direct air capture (DAC)), and 10 % CO<sub>2</sub> by volume at 90 % relative humidity, all at 298 K and ∼1 atm. Interestingly, the M<sub>0.1</sub> sample displayed exceptional CO<sub>2</sub> capture performance, achieving a capacity of 2.53 mmol g⁻¹ (or 4.8 mmol m⁻²) at a 10 % CO<sub>2</sub> by volume feed. This outstanding CO<sub>2</sub> adsorption capacity can be attributed to the synergistic effects of ordered mesopore channels, abundant structural micropores, and nitrogen functionalities, facilitating efficient CO<sub>2</sub> adsorption and desorption. Additionally, M<sub>0.1</sub> also displayed high hydrophobicity character, making it ideal for CO<sub>2</sub> adsorption under humid conditions. Moreover, the M<sub>x</sub> displayed remarkable stability and recyclability, positioning them as promising and environmentally friendly adsorbents for CO<sub>2</sub> capture and separation under practical operating conditions. Additionally, the proposed M<sub>x</sub> does not need any additional alkali activation before application, thus simplifying the implementation process, reducing costs, and complexity.</div></div>","PeriodicalId":9387,"journal":{"name":"Carbon Capture Science & Technology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Capture Science & Technology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772656824001143","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Global warming led by excessive CO2 emission is a significant challenge. CO2 capture is recognised as an efficient way to mitigate this issue. In this study, we successfully synthesized a series of activation-free nitrogen-doped mesoporous carbon nanospheres (Mx: where x is ratio of urea/phenol) via an aqueous synthesis route, using urea-phenol-formaldehyde resin as a precursor and triblock copolymer F127 as a soft template. These Mx exhibited nitrogen contents ranging from 0.48 % to 1.52 % and with high surface areas within the range of 486.382 to 683.891 m²g⁻¹. Furthermore, they demonstrated a uniform pore channel diameter of around 3.2 nm. The incorporated nitrogen atoms primarily in the forms of pyrrolic, pyridine, and amine groups, offers abundant adsorption sites for CO2. The CO2 adsorption and desorption performance of as-synthesized Mx were systematically studied under various CO2 feed concentrations, including 10 % CO2 by volume, compressed air (mimicking direct air capture (DAC)), and 10 % CO2 by volume at 90 % relative humidity, all at 298 K and ∼1 atm. Interestingly, the M0.1 sample displayed exceptional CO2 capture performance, achieving a capacity of 2.53 mmol g⁻¹ (or 4.8 mmol m⁻²) at a 10 % CO2 by volume feed. This outstanding CO2 adsorption capacity can be attributed to the synergistic effects of ordered mesopore channels, abundant structural micropores, and nitrogen functionalities, facilitating efficient CO2 adsorption and desorption. Additionally, M0.1 also displayed high hydrophobicity character, making it ideal for CO2 adsorption under humid conditions. Moreover, the Mx displayed remarkable stability and recyclability, positioning them as promising and environmentally friendly adsorbents for CO2 capture and separation under practical operating conditions. Additionally, the proposed Mx does not need any additional alkali activation before application, thus simplifying the implementation process, reducing costs, and complexity.
利用脲-苯酚-甲醛树脂合成氮掺杂介孔碳纳米球,用于高效 CO2 吸附-解吸研究
二氧化碳的过度排放导致全球变暖,这是一个重大挑战。二氧化碳捕集被认为是缓解这一问题的有效途径。在这项研究中,我们以尿素-苯酚-甲醛树脂为前驱体,以三嵌段共聚物 F127 为软模板,通过水合成路线成功合成了一系列无活化掺氮介孔碳纳米球(Mx:x 为尿素/苯酚的比例)。这些 Mx 的含氮量在 0.48 % 至 1.52 % 之间,具有 486.382 至 683.891 m²g-¹ 的高表面积。此外,它们还具有约 3.2 纳米的均匀孔道直径。主要以吡咯、吡啶和胺基团形式结合的氮原子为二氧化碳提供了丰富的吸附位点。在 298 K 和 ∼1 atm 条件下,系统地研究了合成的 Mx 在不同二氧化碳进料浓度下的二氧化碳吸附和解吸性能,包括 10% 的二氧化碳(体积比)、压缩空气(模拟直接空气捕获 (DAC))和相对湿度为 90% 的 10% 二氧化碳(体积比)。有趣的是,M0.1 样品显示出卓越的二氧化碳捕获性能,在 10% CO2(体积分数)进料条件下,吸附能力达到 2.53 mmol g-¹(或 4.8 mmol m-²)。这种出色的二氧化碳吸附能力归功于有序的中孔通道、丰富的微孔结构和氮功能的协同作用,从而促进了二氧化碳的高效吸附和解吸。此外,M0.1 还具有较高的疏水性,因此非常适合在潮湿条件下吸附二氧化碳。此外,Mx 还显示出卓越的稳定性和可回收性,使其成为在实际操作条件下捕获和分离二氧化碳的理想环保型吸附剂。此外,拟议的 Mx 在应用前不需要任何额外的碱活化,从而简化了实施过程,降低了成本和复杂性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信