Exploiting process thermodynamics in carbon capture from direct air to industrial sources: The paradigmatic case of ionic liquids

Sergio Dorado-Alfaro , Daniel Hospital-Benito , Cristian Moya , Pablo Navarro , Jesús Lemus , José Palomar
{"title":"Exploiting process thermodynamics in carbon capture from direct air to industrial sources: The paradigmatic case of ionic liquids","authors":"Sergio Dorado-Alfaro ,&nbsp;Daniel Hospital-Benito ,&nbsp;Cristian Moya ,&nbsp;Pablo Navarro ,&nbsp;Jesús Lemus ,&nbsp;José Palomar","doi":"10.1016/j.ccst.2024.100320","DOIUrl":null,"url":null,"abstract":"<div><div>The development of efficient and cost-effective carbon capture (CC) technologies is becoming a crucial challenge for short-term industrial decarbonization strategies and energy transition goals centred on biomethane and biohydrogen production. Nowadays, available CC technologies present main shortcomings for being applied to the huge wide range of CO<sub>2</sub> partial pressure involved in currently-of-interest industrial CC scenarios (from 0.0004 bar in direct air capture to 13 bar in pre-combustion system: it means five orders of magnitude). Aprotic N-heterocyclic anion-based ionic liquids (AHA-ILs) arise as highly versatile CO<sub>2</sub> chemical absorbents able to deal with this challenge. In this work, the process thermodynamic limits of the CC based on AHA-IL is explored by estimating the thermodynamic CO<sub>2</sub> absorption cyclic capacity (<span><math><msub><mi>z</mi><mrow><mi>c</mi><mi>y</mi><mi>c</mi><mi>l</mi><mi>i</mi><mi>c</mi></mrow></msub></math></span>) for four relevant CC industrial systems [inlet CO<sub>2</sub> partial pressure typical of direct air capture (DAC), post-combustion (post-comb), biogas upgrading (biogas) and pre-combustion (pre-comb)], by means of sensitivity analysis in the literature reported range of key material properties (reaction enthalpy, <span><math><mrow><mstyle><mi>Δ</mi></mstyle><msub><mi>H</mi><mi>R</mi></msub></mrow></math></span>: [−15, −100 kJ/mol]; reaction entropy, <span><math><mrow><mstyle><mi>Δ</mi></mstyle><msub><mi>S</mi><mi>R</mi></msub></mrow></math></span>: [−0.05, −0.16 kJ/mol⋅K]; Henry constant, <span><math><msub><mi>K</mi><mi>H</mi></msub></math></span>: [20, 115 bar]) and process operating conditions (absorption temperature, <span><math><msup><mrow><mi>T</mi></mrow><mrow><mi>a</mi><mi>b</mi><mi>s</mi></mrow></msup></math></span>: [20, 100 °C]; regeneration temperature, <span><math><msup><mrow><mi>T</mi></mrow><mrow><mi>r</mi><mi>e</mi><mi>g</mi></mrow></msup></math></span>: [20, 100 °C]; regeneration pressure, <span><math><msubsup><mi>P</mi><mrow><mi>C</mi><mi>O</mi><mn>2</mn></mrow><mrow><mi>r</mi><mi>e</mi><mi>g</mi></mrow></msubsup></math></span>: [0.01, 0.5 bar]). It is obtained that <span><math><msub><mi>z</mi><mrow><mi>c</mi><mi>y</mi><mi>c</mi><mi>l</mi><mi>i</mi><mi>c</mi></mrow></msub></math></span> can be significantly increased by designing AHA-ILs with more negative <span><math><mrow><mstyle><mi>Δ</mi></mstyle><msub><mi>H</mi><mi>R</mi></msub></mrow></math></span> and <span><math><mrow><mstyle><mi>Δ</mi></mstyle><msub><mi>S</mi><mi>R</mi></msub></mrow></math></span> values, since reaction exothermicity enhances the absorption stage, whereas unfavourable reaction entropy promotes absorbent regeneration. Physical absorption contribution described by <span><math><msub><mi>K</mi><mi>H</mi></msub></math></span> plays a minor role in post-comb and biogas CC systems and becomes highly relevant for pre-comb conditions; surprisingly, DAC process can be enhanced by decreasing the <span><math><msub><mi>K</mi><mi>H</mi></msub></math></span> value of the material. Regarding the influence of process operating conditions, the CC cyclic capacity is improved by decreasing <span><math><msup><mrow><mi>T</mi></mrow><mrow><mi>a</mi><mi>b</mi><mi>s</mi></mrow></msup></math></span> and <span><math><msubsup><mi>P</mi><mrow><mi>C</mi><mi>O</mi><mn>2</mn></mrow><mrow><mi>r</mi><mi>e</mi><mi>g</mi></mrow></msubsup></math></span> and increasing <span><math><msup><mrow><mi>T</mi></mrow><mrow><mi>r</mi><mi>e</mi><mi>g</mi></mrow></msup></math></span>, but with remarkably different impact depending on CC scenario: <span><math><msub><mi>z</mi><mrow><mi>c</mi><mi>y</mi><mi>c</mi><mi>l</mi><mi>i</mi><mi>c</mi></mrow></msub></math></span> is barely affected in pre-comb system whereas process conditions are determinant for obtaining positive <span><math><msub><mi>z</mi><mrow><mi>c</mi><mi>y</mi><mi>c</mi><mi>l</mi><mi>i</mi><mi>c</mi></mrow></msub></math></span> values in DAC. Finally, the critical analysis of literature available <span><math><mrow><mstyle><mi>Δ</mi></mstyle><msub><mi>H</mi><mi>R</mi></msub></mrow></math></span>, <span><math><mrow><mstyle><mi>Δ</mi></mstyle><msub><mi>S</mi><mi>R</mi></msub></mrow></math></span> and <span><math><msub><mi>K</mi><mi>H</mi></msub></math></span> reveals the great suitability of designing AHA-IL materials, by fine tuning the cation and anion structures, to develop innovative technology with improved CC process performance, particularly for more challenging DAC and diluted carbon source capture.</div></div>","PeriodicalId":9387,"journal":{"name":"Carbon Capture Science & Technology","volume":"13 ","pages":"Article 100320"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Capture Science & Technology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772656824001325","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The development of efficient and cost-effective carbon capture (CC) technologies is becoming a crucial challenge for short-term industrial decarbonization strategies and energy transition goals centred on biomethane and biohydrogen production. Nowadays, available CC technologies present main shortcomings for being applied to the huge wide range of CO2 partial pressure involved in currently-of-interest industrial CC scenarios (from 0.0004 bar in direct air capture to 13 bar in pre-combustion system: it means five orders of magnitude). Aprotic N-heterocyclic anion-based ionic liquids (AHA-ILs) arise as highly versatile CO2 chemical absorbents able to deal with this challenge. In this work, the process thermodynamic limits of the CC based on AHA-IL is explored by estimating the thermodynamic CO2 absorption cyclic capacity (zcyclic) for four relevant CC industrial systems [inlet CO2 partial pressure typical of direct air capture (DAC), post-combustion (post-comb), biogas upgrading (biogas) and pre-combustion (pre-comb)], by means of sensitivity analysis in the literature reported range of key material properties (reaction enthalpy, ΔHR: [−15, −100 kJ/mol]; reaction entropy, ΔSR: [−0.05, −0.16 kJ/mol⋅K]; Henry constant, KH: [20, 115 bar]) and process operating conditions (absorption temperature, Tabs: [20, 100 °C]; regeneration temperature, Treg: [20, 100 °C]; regeneration pressure, PCO2reg: [0.01, 0.5 bar]). It is obtained that zcyclic can be significantly increased by designing AHA-ILs with more negative ΔHR and ΔSR values, since reaction exothermicity enhances the absorption stage, whereas unfavourable reaction entropy promotes absorbent regeneration. Physical absorption contribution described by KH plays a minor role in post-comb and biogas CC systems and becomes highly relevant for pre-comb conditions; surprisingly, DAC process can be enhanced by decreasing the KH value of the material. Regarding the influence of process operating conditions, the CC cyclic capacity is improved by decreasing Tabs and PCO2reg and increasing Treg, but with remarkably different impact depending on CC scenario: zcyclic is barely affected in pre-comb system whereas process conditions are determinant for obtaining positive zcyclic values in DAC. Finally, the critical analysis of literature available ΔHR, ΔSR and KH reveals the great suitability of designing AHA-IL materials, by fine tuning the cation and anion structures, to develop innovative technology with improved CC process performance, particularly for more challenging DAC and diluted carbon source capture.

Abstract Image

在从直接空气到工业源的碳捕集过程中利用过程热力学:离子液体的典型案例
对于以生物甲烷和生物氢生产为核心的短期工业脱碳战略和能源转型目标而言,开发高效且具有成本效益的碳捕集(CC)技术正成为一项重要挑战。目前,现有的碳捕集(CC)技术在应用于目前感兴趣的工业碳捕集(CC)方案所涉及的巨大二氧化碳分压范围(从直接空气捕集的 0.0004 巴到预燃烧系统的 13 巴:这意味着五个数量级)方面存在主要缺陷。Aprotic N-heterocyclic 阴离子基离子液体(AHA-ILs)作为高度通用的二氧化碳化学吸收剂,能够应对这一挑战。在这项工作中,通过对文献报道的关键材料属性范围(反应焓,ΔHR.[-15, -100 kJ])进行敏感性分析,估算了四种相关 CC 工业系统[典型的直接空气捕集(DAC)、燃烧后(post-comb)、沼气升级(biogas)和燃烧前(pre-comb)的入口二氧化碳分压]的热力学二氧化碳吸收循环能力(zcyclic),从而探索了基于 AHA-IL 的 CC 的工艺热力学极限:[-15,-100 kJ/mol];反应熵,ΔSR:[-0.05,-0.16 kJ/mol-K];亨利常数,KH:[20,115 bar])和工艺操作条件(吸收温度,Tabs:[20,100 °C]; 再生温度,Treg:[20,100 °C]; 再生压力,PCO2reg:[0.01,0.5 bar])。结果表明,通过设计具有更多负值 ΔHR 和 ΔSR 的 AHA-IL 可以显著提高 zcyclic 值,因为反应放热会增强吸收阶段,而不利的反应熵则会促进吸收剂的再生。KH 所描述的物理吸收作用在后化学反应和沼气 CC 系统中作用较小,而在前化学反应条件下则变得非常重要;令人惊讶的是,DAC 过程可以通过降低材料的 KH 值来增强。至于工艺操作条件的影响,通过降低 Tabs 和 PCO2reg 以及增加 Treg 可以提高 CC 循环能力,但不同 CC 方案的影响明显不同:在预混合系统中,z 循环几乎不受影响,而在 DAC 中,工艺条件是获得正 z 循环值的决定因素。最后,对现有文献中的ΔHR、ΔSR 和 KH 的批判性分析表明,通过微调阳离子和阴离子结构来设计 AHA-IL 材料,非常适合于开发具有更佳 CC 工艺性能的创新技术,尤其适用于更具挑战性的 DAC 和稀释碳源捕获。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信