Foaming Enables Material-Efficient Bioplastic Products with Minimal Persistence

IF 7.3 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Bryan D. James*, Yanchen Sun, Kali Pate, Rahul Shankar, Mounir Izallalen, Sharmistha Mazumder, Steven T. Perri, Katelyn R. Houston, Brian Edwards, Jos de Wit, Christopher M. Reddy and Collin P. Ward*, 
{"title":"Foaming Enables Material-Efficient Bioplastic Products with Minimal Persistence","authors":"Bryan D. James*,&nbsp;Yanchen Sun,&nbsp;Kali Pate,&nbsp;Rahul Shankar,&nbsp;Mounir Izallalen,&nbsp;Sharmistha Mazumder,&nbsp;Steven T. Perri,&nbsp;Katelyn R. Houston,&nbsp;Brian Edwards,&nbsp;Jos de Wit,&nbsp;Christopher M. Reddy and Collin P. Ward*,&nbsp;","doi":"10.1021/acssuschemeng.4c0582210.1021/acssuschemeng.4c05822","DOIUrl":null,"url":null,"abstract":"<p >Mismanaged plastic products should be designed to inherently reduce their environmental impacts by optimizing material efficiency and minimizing environmental persistence. Foaming biodegradable bioplastics (i.e., introducing microstructural pores into the material) was hypothesized to achieve this objective. To test this hypothesis, marine biodegradation of novel cellulose diacetate (CDA) foams of varying relative density <i></i><math><mo>(</mo><mfrac><mrow><msub><mi>ρ</mi><mi>foam</mi></msub></mrow><mrow><msub><mi>ρ</mi><mi>solid</mi></msub></mrow></mfrac><mo>=</mo><mn>0.09</mn><mo>−</mo><mn>1.00</mn><mo>)</mo></math> was evaluated in a flow-through seawater mesocosm. After 36 weeks, the CDA foams <i></i><math><mo>(</mo><mfrac><mrow><msub><mi>ρ</mi><mi>foam</mi></msub></mrow><mrow><msub><mi>ρ</mi><mi>solid</mi></msub></mrow></mfrac><mo>=</mo><mn>0.09</mn><mo>)</mo></math> lost 65–70% of their mass, while equivalent polystyrene foams persisted with no change in mass. The degradation rates of the CDA foams were ∼15 times that of solid CDA and the fastest of any plastic reported in the ocean. Material indices, value functions, and qualitative descriptors for circularity indicated that CDA foams could be the favorable choice of material for food-packaging applications with potential benefits to society worth hundreds of millions of dollars annually. Foaming of biodegradable bioplastics thus represents a promising strategy toward minimizing the environmental impacts of frequently mismanaged consumer plastics.</p><p >Foaming bioplastics enables their material efficiency and substantially accelerates biodegradation in the coastal ocean.</p>","PeriodicalId":25,"journal":{"name":"ACS Sustainable Chemistry & Engineering","volume":"12 43","pages":"16030–16040 16030–16040"},"PeriodicalIF":7.3000,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acssuschemeng.4c05822","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Sustainable Chemistry & Engineering","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acssuschemeng.4c05822","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Mismanaged plastic products should be designed to inherently reduce their environmental impacts by optimizing material efficiency and minimizing environmental persistence. Foaming biodegradable bioplastics (i.e., introducing microstructural pores into the material) was hypothesized to achieve this objective. To test this hypothesis, marine biodegradation of novel cellulose diacetate (CDA) foams of varying relative density (ρfoamρsolid=0.091.00) was evaluated in a flow-through seawater mesocosm. After 36 weeks, the CDA foams (ρfoamρsolid=0.09) lost 65–70% of their mass, while equivalent polystyrene foams persisted with no change in mass. The degradation rates of the CDA foams were ∼15 times that of solid CDA and the fastest of any plastic reported in the ocean. Material indices, value functions, and qualitative descriptors for circularity indicated that CDA foams could be the favorable choice of material for food-packaging applications with potential benefits to society worth hundreds of millions of dollars annually. Foaming of biodegradable bioplastics thus represents a promising strategy toward minimizing the environmental impacts of frequently mismanaged consumer plastics.

Foaming bioplastics enables their material efficiency and substantially accelerates biodegradation in the coastal ocean.

发泡技术使生物塑料产品具有材料效率高、持久性低的特点
管理不善的塑料产品在设计上应通过优化材料效率和最大限度地减少环境持久性,从本质上减少其对环境的影响。发泡生物可降解生物塑料(即在材料中引入微结构孔隙)被认为可以实现这一目标。为了验证这一假设,我们在一个流动的海水介观模型中评估了不同相对密度(ρfoamρsolid=0.09-1.00)的新型二醋酸纤维素(CDA)泡沫在海洋中的生物降解情况。36 周后,CDA 泡沫(ρfoamρsolid=0.09)的质量减少了 65-70%,而同等质量的聚苯乙烯泡沫则保持不变。CDA 泡沫的降解速度是固体 CDA 的 15 倍,是海洋中所有塑料中降解速度最快的。材料指数、价值函数和循环性定性描述表明,CDA 泡沫可作为食品包装应用的理想材料,每年可为社会带来数亿美元的潜在效益。因此,可生物降解的生物塑料发泡是一种很有前途的策略,可最大限度地减少经常管理不当的消费塑料对环境的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Sustainable Chemistry & Engineering
ACS Sustainable Chemistry & Engineering CHEMISTRY, MULTIDISCIPLINARY-ENGINEERING, CHEMICAL
CiteScore
13.80
自引率
4.80%
发文量
1470
审稿时长
1.7 months
期刊介绍: ACS Sustainable Chemistry & Engineering is a prestigious weekly peer-reviewed scientific journal published by the American Chemical Society. Dedicated to advancing the principles of green chemistry and green engineering, it covers a wide array of research topics including green chemistry, green engineering, biomass, alternative energy, and life cycle assessment. The journal welcomes submissions in various formats, including Letters, Articles, Features, and Perspectives (Reviews), that address the challenges of sustainability in the chemical enterprise and contribute to the advancement of sustainable practices. Join us in shaping the future of sustainable chemistry and engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信