Enhancing De Novo Drug Design across Multiple Therapeutic Targets with CVAE Generative Models

IF 4.3 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Virgilio Romanelli, Daniela Annunziata, Carmen Cerchia, Donato Cerciello, Francesco Piccialli and Antonio Lavecchia*, 
{"title":"Enhancing De Novo Drug Design across Multiple Therapeutic Targets with CVAE Generative Models","authors":"Virgilio Romanelli,&nbsp;Daniela Annunziata,&nbsp;Carmen Cerchia,&nbsp;Donato Cerciello,&nbsp;Francesco Piccialli and Antonio Lavecchia*,&nbsp;","doi":"10.1021/acsomega.4c0802710.1021/acsomega.4c08027","DOIUrl":null,"url":null,"abstract":"<p >Drug discovery is a costly and time-consuming process, necessitating innovative strategies to enhance efficiency across different stages, from initial hit identification to final market approval. Recent advancement in deep learning (DL), particularly in <i>de novo</i> drug design, show promise. Generative models, a subclass of DL algorithms, have significantly accelerated the <i>de novo</i> drug design process by exploring vast areas of chemical space. Here, we introduce a Conditional Variational Autoencoder (CVAE) generative model tailored for <i>de novo</i> molecular design tasks, utilizing both SMILES and SELFIES as molecular representations. Our computational framework successfully generates molecules with specific property profiles validated though metrics such as uniqueness, validity, novelty, quantitative estimate of drug-likeness (QED), and synthetic accessibility (SA). We evaluated our model’s efficacy in generating novel molecules capable of binding to three therapeutic molecular targets: CDK2, PPARγ, and DPP-IV. Comparing with state-of-the-art frameworks demonstrated our model’s ability to achieve higher structural diversity while maintaining the molecular properties ranges observed in the training set molecules. This proposed model stands as a valuable resource for advancing <i>de novo</i> molecular design capabilities.</p>","PeriodicalId":22,"journal":{"name":"ACS Omega","volume":"9 43","pages":"43963–43976 43963–43976"},"PeriodicalIF":4.3000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsomega.4c08027","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Omega","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsomega.4c08027","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Drug discovery is a costly and time-consuming process, necessitating innovative strategies to enhance efficiency across different stages, from initial hit identification to final market approval. Recent advancement in deep learning (DL), particularly in de novo drug design, show promise. Generative models, a subclass of DL algorithms, have significantly accelerated the de novo drug design process by exploring vast areas of chemical space. Here, we introduce a Conditional Variational Autoencoder (CVAE) generative model tailored for de novo molecular design tasks, utilizing both SMILES and SELFIES as molecular representations. Our computational framework successfully generates molecules with specific property profiles validated though metrics such as uniqueness, validity, novelty, quantitative estimate of drug-likeness (QED), and synthetic accessibility (SA). We evaluated our model’s efficacy in generating novel molecules capable of binding to three therapeutic molecular targets: CDK2, PPARγ, and DPP-IV. Comparing with state-of-the-art frameworks demonstrated our model’s ability to achieve higher structural diversity while maintaining the molecular properties ranges observed in the training set molecules. This proposed model stands as a valuable resource for advancing de novo molecular design capabilities.

利用 CVAE 生成模型加强跨多个治疗靶点的新药设计
药物发现是一个成本高、耗时长的过程,因此有必要采取创新策略,以提高从最初发现新药到最终获得市场批准等不同阶段的效率。深度学习(DL)的最新进展,尤其是在新药设计方面的进展,显示出了良好的前景。生成模型是深度学习算法的一个子类,它通过探索广阔的化学空间,大大加快了新药设计过程。在这里,我们介绍了一种专为从头分子设计任务定制的条件变异自动编码器(CVAE)生成模型,利用 SMILES 和 SELFIES 作为分子表征。我们的计算框架成功生成了具有特定性质特征的分子,这些性质特征通过独特性、有效性、新颖性、药物相似性定量估计(QED)和合成可及性(SA)等指标进行了验证。我们评估了我们的模型在生成能够与三个治疗分子靶点结合的新型分子方面的功效:CDK2、PPARγ 和 DPP-IV。与最先进的框架相比,我们的模型能够实现更高的结构多样性,同时保持在训练集分子中观察到的分子特性范围。该模型是提高新分子设计能力的宝贵资源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Omega
ACS Omega Chemical Engineering-General Chemical Engineering
CiteScore
6.60
自引率
4.90%
发文量
3945
审稿时长
2.4 months
期刊介绍: ACS Omega is an open-access global publication for scientific articles that describe new findings in chemistry and interfacing areas of science, without any perceived evaluation of immediate impact.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信