{"title":"Phonon-Induced Geometric Chirality","authors":"Carl P. Romao*, and , Dominik M. Juraschek*, ","doi":"10.1021/acsnano.4c0597810.1021/acsnano.4c05978","DOIUrl":null,"url":null,"abstract":"<p >Chiral properties have seen increasing use in recent years, leading to the emerging fields of chiral quantum optics, plasmonics, and phononics. While these fields have achieved manipulation of the chirality of light and lattice vibrations, controlling the chirality of materials on demand has yet remained elusive. Here, we demonstrate that linearly polarized phonons can be used to induce geometric chirality in achiral crystals when excited with an ultrashort laser pulse. We show that nonlinear phonon coupling quasistatically displaces the crystal structure along phonon modes that reduce the symmetry of the lattice to that of a chiral point group corresponding to a chiral crystal. By reorienting the polarization of the laser pulse, the two enantiomers can be induced selectively. Therefore, <i>geometric chiral phonons</i> enable the light-induced creation of chiral crystal structures and therefore the engineering of chiral electronic states and optical properties.</p>","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"18 43","pages":"29550–29557 29550–29557"},"PeriodicalIF":16.0000,"publicationDate":"2024-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsnano.4c05978","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsnano.4c05978","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Chiral properties have seen increasing use in recent years, leading to the emerging fields of chiral quantum optics, plasmonics, and phononics. While these fields have achieved manipulation of the chirality of light and lattice vibrations, controlling the chirality of materials on demand has yet remained elusive. Here, we demonstrate that linearly polarized phonons can be used to induce geometric chirality in achiral crystals when excited with an ultrashort laser pulse. We show that nonlinear phonon coupling quasistatically displaces the crystal structure along phonon modes that reduce the symmetry of the lattice to that of a chiral point group corresponding to a chiral crystal. By reorienting the polarization of the laser pulse, the two enantiomers can be induced selectively. Therefore, geometric chiral phonons enable the light-induced creation of chiral crystal structures and therefore the engineering of chiral electronic states and optical properties.
期刊介绍:
ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.