Lili Song, Luyao Zhong, Ting Li, Yufei Chen, Xinglei Zhang, Konstantin Chingin, Ni Zhang, Hui Li, Liyun Hu, Dongfa Guo, Huanwen Chen, Rui Su* and Jiaquan Xu*,
{"title":"Chemical Fingerprinting of PM2.5 via Sequential Speciation Analysis Using Electrochemical Mass Spectrometry","authors":"Lili Song, Luyao Zhong, Ting Li, Yufei Chen, Xinglei Zhang, Konstantin Chingin, Ni Zhang, Hui Li, Liyun Hu, Dongfa Guo, Huanwen Chen, Rui Su* and Jiaquan Xu*, ","doi":"10.1021/acs.est.4c0168210.1021/acs.est.4c01682","DOIUrl":null,"url":null,"abstract":"<p >Chemical fingerprinting to characterize the occurrence state and abundance of organic and inorganic constituents within fine particulate matter (PM2.5) is useful in evaluating the associated health risks and tracing pollution sources. Herein, an analytical strategy for the rapid analysis of metal and organic constituents in PM2.5 was developed employing a combination of sequential chemical extraction coupled with mass spectrometry detection. H<sub>2</sub>O, CH<sub>3</sub>OH, EDTA-2Na, electrochemical oxidation, and electrochemical reduction were sequentially utilized to extract the chemical constituents in PM2.5 samples on a homemade device employing simultaneous online detection using two linear trap quadrupole mass spectrometers (LTQ-MS) with electrospray ionization (ESI) in positive and negative modes. After a single analytical procedure, dozens of metals (e.g., Pb, Cr, and Cu), organic compounds (e.g., amines, polycyclic aromatic hydrocarbons, and aliphatic acids), and negative ions (e.g., NO<sub>3</sub><sup>–</sup>, NO<sub>2</sub><sup>–</sup>, and Cl<sup>–</sup>) were comprehensively detected in the water-soluble, liposoluble, insoluble, oxidizable, and reducible fractions of PM2.5 samples, and their physical and chemical relationships were established.</p>","PeriodicalId":36,"journal":{"name":"环境科学与技术","volume":"58 43","pages":"19362–19371 19362–19371"},"PeriodicalIF":10.8000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"环境科学与技术","FirstCategoryId":"1","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.est.4c01682","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Chemical fingerprinting to characterize the occurrence state and abundance of organic and inorganic constituents within fine particulate matter (PM2.5) is useful in evaluating the associated health risks and tracing pollution sources. Herein, an analytical strategy for the rapid analysis of metal and organic constituents in PM2.5 was developed employing a combination of sequential chemical extraction coupled with mass spectrometry detection. H2O, CH3OH, EDTA-2Na, electrochemical oxidation, and electrochemical reduction were sequentially utilized to extract the chemical constituents in PM2.5 samples on a homemade device employing simultaneous online detection using two linear trap quadrupole mass spectrometers (LTQ-MS) with electrospray ionization (ESI) in positive and negative modes. After a single analytical procedure, dozens of metals (e.g., Pb, Cr, and Cu), organic compounds (e.g., amines, polycyclic aromatic hydrocarbons, and aliphatic acids), and negative ions (e.g., NO3–, NO2–, and Cl–) were comprehensively detected in the water-soluble, liposoluble, insoluble, oxidizable, and reducible fractions of PM2.5 samples, and their physical and chemical relationships were established.
期刊介绍:
Environmental Science & Technology (ES&T) is a co-sponsored academic and technical magazine by the Hubei Provincial Environmental Protection Bureau and the Hubei Provincial Academy of Environmental Sciences.
Environmental Science & Technology (ES&T) holds the status of Chinese core journals, scientific papers source journals of China, Chinese Science Citation Database source journals, and Chinese Academic Journal Comprehensive Evaluation Database source journals. This publication focuses on the academic field of environmental protection, featuring articles related to environmental protection and technical advancements.