{"title":"An In Vitro Study of 355-nm Laser Ablation of Atherosclerotic Lesions Model.","authors":"Fangying Wei, Jiajun He, Shiyong Zhao, Peng Lei, Qingjie Zhang, Guangxi Li, Xiaopeng Li, Xin Ding, Jianquan Yao","doi":"10.1002/jbio.202400329","DOIUrl":null,"url":null,"abstract":"<p><p>A study of 355 nm laser with high pulse energy across various types of atherosclerotic lesion models is presented. The 355 nm laser pulses (10 ns) are delivered via a single fiber (600 μm diameter), and the ablation of calcified tissue, lipid tissue, and thrombus-like tissue are studied under varied laser fluence (40-70 mJ/mm<sup>2</sup>) and repetition rate (5-30 Hz). The contact and noncontact ablation processes of chicken tibia samples (calcified tissue) are compared at 60 mJ/mm<sup>2</sup> and 30 Hz, and the size of ablation particles is in the range of 0.1-1 μm. At the same repetition rate, the advancement rate of tricalcium phosphate samples reaches 150 μm/s at 70 mJ/mm<sup>2</sup>. Calcified and lipid models demonstrate predictable increases in ablation with higher laser fluence and repetition rate. The fresh porcine blood clot samples exhibit high-quality ablation with good channel effect at 50 mJ/mm<sup>2</sup> and 30 Hz.</p>","PeriodicalId":94068,"journal":{"name":"Journal of biophotonics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biophotonics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/jbio.202400329","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
A study of 355 nm laser with high pulse energy across various types of atherosclerotic lesion models is presented. The 355 nm laser pulses (10 ns) are delivered via a single fiber (600 μm diameter), and the ablation of calcified tissue, lipid tissue, and thrombus-like tissue are studied under varied laser fluence (40-70 mJ/mm2) and repetition rate (5-30 Hz). The contact and noncontact ablation processes of chicken tibia samples (calcified tissue) are compared at 60 mJ/mm2 and 30 Hz, and the size of ablation particles is in the range of 0.1-1 μm. At the same repetition rate, the advancement rate of tricalcium phosphate samples reaches 150 μm/s at 70 mJ/mm2. Calcified and lipid models demonstrate predictable increases in ablation with higher laser fluence and repetition rate. The fresh porcine blood clot samples exhibit high-quality ablation with good channel effect at 50 mJ/mm2 and 30 Hz.