Protein-protein interaction network study of metallo-beta-lactamase-L1 present in Stenotrophomonas maltophilia and identification of potential drug targets.

In silico pharmacology Pub Date : 2024-10-29 eCollection Date: 2024-01-01 DOI:10.1007/s40203-024-00270-9
K H Sreenithya, Shobana Sugumar
{"title":"Protein-protein interaction network study of metallo-beta-lactamase-L1 present in <i>Stenotrophomonas maltophilia</i> and identification of potential drug targets.","authors":"K H Sreenithya, Shobana Sugumar","doi":"10.1007/s40203-024-00270-9","DOIUrl":null,"url":null,"abstract":"<p><p>Microorganisms are evolving to withstand the effect of antimicrobial agents and thereby pose a global threat known as antimicrobial resistance. Resistance towards multiple drugs due to various intrinsic as well environmental factors leads to an even more dangerous drug resistance property known as multi-drug resistance (MDR). WHO has recognized MDR bacteria as a top global threat as they complicate the treatment and augment mortality and morbidity risks. Gram-negative bacteria produce beta-lactamase enzymes that can hydrolyze beta-lactam antibiotics, impacting drug susceptibility. <i>Stenotrophomonas maltophilia</i>, an opportunistic pathogen, exemplifies MDR due to the production of two types of beta-lactamases. The metallo-beta-lactamase (MBL) L1 produced by the bacteria is a class B1 zinc-dependent MBL that is broadly substrate-specific and is a challenge to the currently available treatment options. This study constructs and analyzes a protein-protein interaction network of L1 beta-lactamase to comprehend its role in the MDR property of the bacteria. The network encompasses 51 proteins including L1 MBL (Smlt2667) and 382 interactions, revealing key players in MDR and potential drug targets. The network analysis aids the discernment of antimicrobial gene impact on cellular function, informing drug discovery strategies. This research addresses the emerging challenge of antibiotic resistance and identifies pathways for therapeutic intervention.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s40203-024-00270-9.</p>","PeriodicalId":94038,"journal":{"name":"In silico pharmacology","volume":"12 2","pages":"94"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11519282/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"In silico pharmacology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s40203-024-00270-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Microorganisms are evolving to withstand the effect of antimicrobial agents and thereby pose a global threat known as antimicrobial resistance. Resistance towards multiple drugs due to various intrinsic as well environmental factors leads to an even more dangerous drug resistance property known as multi-drug resistance (MDR). WHO has recognized MDR bacteria as a top global threat as they complicate the treatment and augment mortality and morbidity risks. Gram-negative bacteria produce beta-lactamase enzymes that can hydrolyze beta-lactam antibiotics, impacting drug susceptibility. Stenotrophomonas maltophilia, an opportunistic pathogen, exemplifies MDR due to the production of two types of beta-lactamases. The metallo-beta-lactamase (MBL) L1 produced by the bacteria is a class B1 zinc-dependent MBL that is broadly substrate-specific and is a challenge to the currently available treatment options. This study constructs and analyzes a protein-protein interaction network of L1 beta-lactamase to comprehend its role in the MDR property of the bacteria. The network encompasses 51 proteins including L1 MBL (Smlt2667) and 382 interactions, revealing key players in MDR and potential drug targets. The network analysis aids the discernment of antimicrobial gene impact on cellular function, informing drug discovery strategies. This research addresses the emerging challenge of antibiotic resistance and identifies pathways for therapeutic intervention.

Supplementary information: The online version contains supplementary material available at 10.1007/s40203-024-00270-9.

嗜麦芽单胞菌中金属-beta-内酰胺酶-L1的蛋白质-蛋白质相互作用网络研究及潜在药物靶点的鉴定。
微生物在不断进化,以抵御抗菌剂的作用,从而构成了一种全球性威胁,即抗菌剂耐药性。由于各种内在因素和环境因素导致的对多种药物的耐药性,会产生一种更为危险的耐药性,即多重耐药性(MDR)。世卫组织已将多重耐药菌视为全球首要威胁,因为它们会使治疗复杂化,并增加死亡率和发病率风险。革兰氏阴性细菌产生的β-内酰胺酶能水解β-内酰胺类抗生素,从而影响对药物的敏感性。嗜麦芽血单胞菌是一种机会性病原体,由于产生两种类型的β-内酰胺酶而成为耐药菌。该细菌产生的金属-β-内酰胺酶(MBL)L1 是一种 B1 类锌依赖型 MBL,具有广泛的底物特异性,是对现有治疗方案的挑战。本研究构建并分析了 L1 β-内酰胺酶的蛋白质-蛋白质相互作用网络,以了解其在细菌 MDR 特性中的作用。该网络包括 L1 MBL (Smlt2667) 在内的 51 种蛋白质和 382 种相互作用,揭示了 MDR 中的关键角色和潜在的药物靶点。网络分析有助于鉴别抗菌基因对细胞功能的影响,为药物发现策略提供信息。这项研究解决了新出现的抗生素耐药性挑战,并确定了治疗干预的途径:在线版本包含补充材料,可查阅 10.1007/s40203-024-00270-9。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信