Yahya Kooch , Azam Nouraei , Liping Wang , Xiang Wang , Donghui Wu , Rosa Francaviglia , Jan Frouz , Mohammad Kazem Parsapour
{"title":"Long-term landfill leachate pollution suppresses soil health indicators in natural ecosystems of a semi-arid environment","authors":"Yahya Kooch , Azam Nouraei , Liping Wang , Xiang Wang , Donghui Wu , Rosa Francaviglia , Jan Frouz , Mohammad Kazem Parsapour","doi":"10.1016/j.chemosphere.2024.143647","DOIUrl":null,"url":null,"abstract":"<div><div>Landfills pose a global issue for soil functionality and health, especially in underdeveloped nations where limited resources impede the adoption of comprehensive waste management policies, such as waste processing and sorting techniques. Leachate emissions from waste landfills are a cause for concern, primarily due to their toxic effect if left uncontrolled in the environment, and the potential for waste storage sites to produce leachate for hundreds of years after closure. Few efforts have been made to improve waste collection and disposal facilities in the world, especially in developing countries. This research aims to investigate the influence of waste leachate on soil health indicators in natural woodland and rangeland ecological systems in a semi-arid mountainous region in the north of Iran. Based on results, forest unpolluted sites (2008) exhibited the highest values of nutrient elements in litter and root components. Landfills led to a rise in soil bulk density and a simultaneous decrease in soil organic matter (SOM), porosity, aggregate stability, particulate organic carbon and nitrogen (POC and PON), as well as available nutrients, ammonium (NH<sub>4</sub><sup>+</sup>) and nitrate (NO<sub>3</sub><sup>−</sup>) levels. Additionally, microbial parameters (respiration and biomass) and enzymes (urease, acid phosphatase, arylsulfatase and invertase) experienced a decrease in areas affected by the landfill sites over time of 2008–2023. Forest and rangeland landfill sites (2023) sites had lower density and biomass of the three earthworm groups. Acari, Collembola, nematodes, protozoans, fungi and bacteria were also reduced in landfill sites (nearly 1–2 times more in uncontaminated forest and rangeland sites). <em>Lumbricus terrestris</em> earthworms exhibited a clear presence in all the studied sites, and this demonstrates the ability of this earthworm species to be active in severe pollution conditions. The spatial pattern of soil cadmium and lead changes indicates the high variance of these characteristics under the influence of landfills in the study sites. Finally, the soil health indicators (according to soil physical, chemical, and biological parameters) decreased from forest unpolluted sites in 2008 to rangeland landfill sites in 2023, which is linked to the release of landfill leachate. These results are noteworthy for all countries and governments that rely on natural ecosystems for waste management without engineering operations or technical intervention. Furthermore, both governments and stakeholders must implement effective waste management systems. The research offers valuable information that can assist decision-makers engaged in sustainable solid waste management in Iran and comparable areas. Besides that, it is highly recommended to prioritize recycling and phytoremediation processes. Ultimately, worldwide efforts to achieve environmental sustainability need a significant focus on the effective management of hazardous waste. Consequently, investigations covering this topic should be continued, as they allow the evaluation of the environmental effects of the gradual accumulation of pollution in soils surrounding uncontrolled municipal solid waste landfills.</div></div>","PeriodicalId":276,"journal":{"name":"Chemosphere","volume":"367 ","pages":"Article 143647"},"PeriodicalIF":8.1000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemosphere","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0045653524025475","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Landfills pose a global issue for soil functionality and health, especially in underdeveloped nations where limited resources impede the adoption of comprehensive waste management policies, such as waste processing and sorting techniques. Leachate emissions from waste landfills are a cause for concern, primarily due to their toxic effect if left uncontrolled in the environment, and the potential for waste storage sites to produce leachate for hundreds of years after closure. Few efforts have been made to improve waste collection and disposal facilities in the world, especially in developing countries. This research aims to investigate the influence of waste leachate on soil health indicators in natural woodland and rangeland ecological systems in a semi-arid mountainous region in the north of Iran. Based on results, forest unpolluted sites (2008) exhibited the highest values of nutrient elements in litter and root components. Landfills led to a rise in soil bulk density and a simultaneous decrease in soil organic matter (SOM), porosity, aggregate stability, particulate organic carbon and nitrogen (POC and PON), as well as available nutrients, ammonium (NH4+) and nitrate (NO3−) levels. Additionally, microbial parameters (respiration and biomass) and enzymes (urease, acid phosphatase, arylsulfatase and invertase) experienced a decrease in areas affected by the landfill sites over time of 2008–2023. Forest and rangeland landfill sites (2023) sites had lower density and biomass of the three earthworm groups. Acari, Collembola, nematodes, protozoans, fungi and bacteria were also reduced in landfill sites (nearly 1–2 times more in uncontaminated forest and rangeland sites). Lumbricus terrestris earthworms exhibited a clear presence in all the studied sites, and this demonstrates the ability of this earthworm species to be active in severe pollution conditions. The spatial pattern of soil cadmium and lead changes indicates the high variance of these characteristics under the influence of landfills in the study sites. Finally, the soil health indicators (according to soil physical, chemical, and biological parameters) decreased from forest unpolluted sites in 2008 to rangeland landfill sites in 2023, which is linked to the release of landfill leachate. These results are noteworthy for all countries and governments that rely on natural ecosystems for waste management without engineering operations or technical intervention. Furthermore, both governments and stakeholders must implement effective waste management systems. The research offers valuable information that can assist decision-makers engaged in sustainable solid waste management in Iran and comparable areas. Besides that, it is highly recommended to prioritize recycling and phytoremediation processes. Ultimately, worldwide efforts to achieve environmental sustainability need a significant focus on the effective management of hazardous waste. Consequently, investigations covering this topic should be continued, as they allow the evaluation of the environmental effects of the gradual accumulation of pollution in soils surrounding uncontrolled municipal solid waste landfills.
期刊介绍:
Chemosphere, being an international multidisciplinary journal, is dedicated to publishing original communications and review articles on chemicals in the environment. The scope covers a wide range of topics, including the identification, quantification, behavior, fate, toxicology, treatment, and remediation of chemicals in the bio-, hydro-, litho-, and atmosphere, ensuring the broad dissemination of research in this field.