Peptide PET Imaging: A Review of Recent Developments and a Look at the Future of Radiometal-Labeled Peptides in Medicine.

Chemical & Biomedical Imaging Pub Date : 2024-08-23 eCollection Date: 2024-09-23 DOI:10.1021/cbmi.4c00030
Majed Shabsigh, Lee A Solomon
{"title":"Peptide PET Imaging: A Review of Recent Developments and a Look at the Future of Radiometal-Labeled Peptides in Medicine.","authors":"Majed Shabsigh, Lee A Solomon","doi":"10.1021/cbmi.4c00030","DOIUrl":null,"url":null,"abstract":"<p><p>The development of peptide-based, radiometal-labeled PET imaging agents has seen an increase in attention due to the favorable properties the peptide backbone exhibits. These include high selectivity and affinity to proteins and cells directly linked to various types of cancers. In addition, rapid clearance from circulation and low toxicity allow for unique approaches to engineering a viable peptide-based imaging agent. Utilizing peptides as the backbone allows for various modifications to improve metabolic stability, target cell affinity, and image quality and imaging capabilities and reduce toxicity. Select radiolabeled peptides have already been FDA approved, with many more in late-stage trials. This review summarizes the current state of the radiometal-labeled PET peptide imaging field as well as explores methods used by researchers to modify peptides, concluding with a look at the future of peptide-based therapy and diagnostics.</p>","PeriodicalId":53181,"journal":{"name":"Chemical & Biomedical Imaging","volume":"2 9","pages":"615-630"},"PeriodicalIF":0.0000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11503725/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical & Biomedical Imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1021/cbmi.4c00030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/23 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The development of peptide-based, radiometal-labeled PET imaging agents has seen an increase in attention due to the favorable properties the peptide backbone exhibits. These include high selectivity and affinity to proteins and cells directly linked to various types of cancers. In addition, rapid clearance from circulation and low toxicity allow for unique approaches to engineering a viable peptide-based imaging agent. Utilizing peptides as the backbone allows for various modifications to improve metabolic stability, target cell affinity, and image quality and imaging capabilities and reduce toxicity. Select radiolabeled peptides have already been FDA approved, with many more in late-stage trials. This review summarizes the current state of the radiometal-labeled PET peptide imaging field as well as explores methods used by researchers to modify peptides, concluding with a look at the future of peptide-based therapy and diagnostics.

多肽 PET 成像:多肽正电子发射计算机断层成像:最新发展综述及放射性同位素标记多肽在医学中的未来展望》(Peptide PET Imaging: A Review of Recent Developments and a Look at the Future of Radiometal-Labeled Peptides in Medicine.
由于多肽骨架所具有的有利特性,基于多肽的放射性金属标记 PET 成像剂的开发越来越受到关注。这些特性包括对与各类癌症直接相关的蛋白质和细胞具有高选择性和亲和性。此外,肽在血液循环中的快速清除和低毒性使我们能够采用独特的方法来设计一种可行的肽基成像剂。利用肽作为骨架可以进行各种修饰,以提高代谢稳定性、靶细胞亲和力、图像质量和成像能力,并降低毒性。部分放射性标记肽已获得 FDA 批准,还有更多肽处于后期试验阶段。本综述总结了放射性同位素标记 PET 肽成像领域的现状,并探讨了研究人员用来修饰肽的方法,最后展望了基于肽的治疗和诊断的未来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chemical & Biomedical Imaging
Chemical & Biomedical Imaging 化学与生物成像-
CiteScore
1.00
自引率
0.00%
发文量
0
期刊介绍: Chemical & Biomedical Imaging is a peer-reviewed open access journal devoted to the publication of cutting-edge research papers on all aspects of chemical and biomedical imaging. This interdisciplinary field sits at the intersection of chemistry physics biology materials engineering and medicine. The journal aims to bring together researchers from across these disciplines to address cutting-edge challenges of fundamental research and applications.Topics of particular interest include but are not limited to:Imaging of processes and reactionsImaging of nanoscale microscale and mesoscale materialsImaging of biological interactions and interfacesSingle-molecule and cellular imagingWhole-organ and whole-body imagingMolecular imaging probes and contrast agentsBioluminescence chemiluminescence and electrochemiluminescence imagingNanophotonics and imagingChemical tools for new imaging modalitiesChemical and imaging techniques in diagnosis and therapyImaging-guided drug deliveryAI and machine learning assisted imaging
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信