Jinfeng Wang, Bader O Almutairi, Lin Wang, Peijian Shi, Weihao Yao, Ülo Niinemets
{"title":"Scaling of cotyledon and primary leaf mass versus area in <i>Acer platanoides</i> seedlings under different light conditions.","authors":"Jinfeng Wang, Bader O Almutairi, Lin Wang, Peijian Shi, Weihao Yao, Ülo Niinemets","doi":"10.1093/aobpla/plae054","DOIUrl":null,"url":null,"abstract":"<p><p>Cotyledons play an important role in early seedling establishment. However, relative to primary leaves, cotyledons tend to have a different investment-on-return strategy. To detect the potential differences in the mass (<i>M</i>) versus area (<i>A</i>) scaling relationships between cotyledons and primary leaves in different light environments, a total of 75 <i>Acer platanoides</i> seedlings were sampled at an open site (<i>n</i> = 52; light availability: 74 ± 5 %) and a shaded site (<i>n</i> = 23; light availability: 4.2 ± 1.2 %). Reduced major axis regression protocols were used to fit the <i>M</i> versus <i>A</i> scaling relationships of primary leaves and cotyledons. The bootstrap percentile method was used to test the significance of the differences in the scaling exponents of <i>M</i> versus <i>A</i> between the two light environments. The scaling exponents of cotyledons at both two sites, as well as the primary leaves at the shade site, were greater than unity indicating 'diminishing returns', while the scaling exponent of primary leaves at the open site was smaller than unity indicating 'increasing returns'. The data collectively indicated light-dependent shifts in support investments and differences in the function of cotyledons and primary leaves. Average leaf structural traits displayed significant differences between the two light environments in accordance with the premium in enhancing photosynthetic capacity in high light and light interception in low light. Although the trait responses to light availability were similar for primary leaves and cotyledons, primary leaves were more responsive to light availability, indicating lower plasticity of cotyledons in response to light levels. These results advance our understanding of the roles of cotyledons and primary leaves in the life history of seedlings in different forest light environments.</p>","PeriodicalId":48955,"journal":{"name":"AoB Plants","volume":"16 5","pages":"plae054"},"PeriodicalIF":2.6000,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11523618/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AoB Plants","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/aobpla/plae054","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Cotyledons play an important role in early seedling establishment. However, relative to primary leaves, cotyledons tend to have a different investment-on-return strategy. To detect the potential differences in the mass (M) versus area (A) scaling relationships between cotyledons and primary leaves in different light environments, a total of 75 Acer platanoides seedlings were sampled at an open site (n = 52; light availability: 74 ± 5 %) and a shaded site (n = 23; light availability: 4.2 ± 1.2 %). Reduced major axis regression protocols were used to fit the M versus A scaling relationships of primary leaves and cotyledons. The bootstrap percentile method was used to test the significance of the differences in the scaling exponents of M versus A between the two light environments. The scaling exponents of cotyledons at both two sites, as well as the primary leaves at the shade site, were greater than unity indicating 'diminishing returns', while the scaling exponent of primary leaves at the open site was smaller than unity indicating 'increasing returns'. The data collectively indicated light-dependent shifts in support investments and differences in the function of cotyledons and primary leaves. Average leaf structural traits displayed significant differences between the two light environments in accordance with the premium in enhancing photosynthetic capacity in high light and light interception in low light. Although the trait responses to light availability were similar for primary leaves and cotyledons, primary leaves were more responsive to light availability, indicating lower plasticity of cotyledons in response to light levels. These results advance our understanding of the roles of cotyledons and primary leaves in the life history of seedlings in different forest light environments.
期刊介绍:
AoB PLANTS is an open-access, online journal that has been publishing peer-reviewed articles since 2010, with an emphasis on all aspects of environmental and evolutionary plant biology. Published by Oxford University Press, this journal is dedicated to rapid publication of research articles, reviews, commentaries and short communications. The taxonomic scope of the journal spans the full gamut of vascular and non-vascular plants, as well as other taxa that impact these organisms. AoB PLANTS provides a fast-track pathway for publishing high-quality research in an open-access environment, where papers are available online to anyone, anywhere free of charge.