Integrated Genomic Approaches to Characterize and Mitigate Heat Stress in Poultry.

IF 8.7 1区 农林科学 Q1 AGRICULTURE, DAIRY & ANIMAL SCIENCE
Carl J Schmidt, Susan J Lamont
{"title":"Integrated Genomic Approaches to Characterize and Mitigate Heat Stress in Poultry.","authors":"Carl J Schmidt, Susan J Lamont","doi":"10.1146/annurev-animal-111523-102021","DOIUrl":null,"url":null,"abstract":"<p><p>With the burgeoning human population, climate change, and expansion of poultry production in hot climates, it is imperative to aid global food security by enhancing the resilience of thermally challenged poultry. As a complement to management approaches used to mitigate heat stress, we give selected examples of recent studies on heat stress in poultry using various omics technologies. An integrated analysis of positional and functional candidate genes is provided, highlighting the most prominent pathways involved in the heat stress response. We finish by discussing efficient strategies to enhance thermal tolerance of poultry by genomics approaches, advocating for preservation of biodiversity that may provide beneficial allelic variation, and identifying current and future challenges in producing climate-resilient poultry.</p>","PeriodicalId":48953,"journal":{"name":"Annual Review of Animal Biosciences","volume":" ","pages":""},"PeriodicalIF":8.7000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Review of Animal Biosciences","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1146/annurev-animal-111523-102021","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, DAIRY & ANIMAL SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

With the burgeoning human population, climate change, and expansion of poultry production in hot climates, it is imperative to aid global food security by enhancing the resilience of thermally challenged poultry. As a complement to management approaches used to mitigate heat stress, we give selected examples of recent studies on heat stress in poultry using various omics technologies. An integrated analysis of positional and functional candidate genes is provided, highlighting the most prominent pathways involved in the heat stress response. We finish by discussing efficient strategies to enhance thermal tolerance of poultry by genomics approaches, advocating for preservation of biodiversity that may provide beneficial allelic variation, and identifying current and future challenges in producing climate-resilient poultry.

表征和缓解家禽热应激的综合基因组方法。
随着人类人口的激增、气候变化以及家禽生产在炎热气候条件下的扩展,当务之急是通过提高家禽对热应激的适应能力来帮助实现全球粮食安全。作为对用于缓解热应激的管理方法的补充,我们列举了近期利用各种全局组学技术对家禽热应激进行研究的一些实例。我们对候选基因的位置和功能进行了综合分析,突出了热应激反应中最重要的途径。最后,我们讨论了通过基因组学方法提高家禽热耐受性的有效策略,提倡保护可能提供有益等位基因变异的生物多样性,并明确了当前和未来生产气候适应性家禽所面临的挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Annual Review of Animal Biosciences
Annual Review of Animal Biosciences BIOTECHNOLOGY & APPLIED MICROBIOLOGY-ZOOLOGY
CiteScore
21.30
自引率
0.80%
发文量
31
期刊介绍: The Annual Review of Animal Biosciences is primarily dedicated to the fields of biotechnology, genetics, genomics, and breeding, with a special focus on veterinary medicine. This includes veterinary pathobiology, infectious diseases and vaccine development, and conservation and zoo biology. The publication aims to address the needs of scientists studying both wild and domesticated animal species, veterinarians, conservation biologists, and geneticists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信