Predicting Functional Outcomes of Endovascular Thrombectomy in Acute Ischemic Stroke Using a Clinical-Radiomics Nomogram.

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Yuan Zhang, Tingting Zheng, Hao Wang, Jie Zhu, Shaofeng Duan, Bin Song
{"title":"Predicting Functional Outcomes of Endovascular Thrombectomy in Acute Ischemic Stroke Using a Clinical-Radiomics Nomogram.","authors":"Yuan Zhang, Tingting Zheng, Hao Wang, Jie Zhu, Shaofeng Duan, Bin Song","doi":"10.1016/j.wneu.2024.10.073","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Endovascular thrombectomy (EVT) is recommended for acute ischemic stroke (AIS) due to large-vessel occlusion. However, approximately 50% of patients still face poor outcomes post-procedure. This study aimed to assess whether a nomogram model that integrates CT angiography radiomics features and clinical variables can predict EVT outcomes in AIS patients.</p><p><strong>Methods: </strong>159 EVT patients were randomly divided into training and validation groups at a 7:3 ratio. A modified Rankin Scale (mRS) ≤ 2 at 90 days indicated a favorable outcome. We used univariate and multivariate logistic regression to identify analytic and radiomic predictors and create predictive models. Model performance was evaluated using the AUC, Hosmer-Lemeshow test, and decision curve analysis for discrimination, calibration, and clinical utility.</p><p><strong>Results: </strong>A 19-feature radiomic signature reached an AUC of 0.79. Combining it with age, baseline NIHSS, diabetes, and statin use raised the clinical-radiomics nomogram's AUC to 0.85. Both decision curve and calibration curve analyses showed strong performance.</p><p><strong>Conclusion: </strong>Combining radiomics nomogram with clinical predictors could effectively forecast EVT outcomes in acute anterior circulation large vessel occlusion stroke patients.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.wneu.2024.10.073","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Endovascular thrombectomy (EVT) is recommended for acute ischemic stroke (AIS) due to large-vessel occlusion. However, approximately 50% of patients still face poor outcomes post-procedure. This study aimed to assess whether a nomogram model that integrates CT angiography radiomics features and clinical variables can predict EVT outcomes in AIS patients.

Methods: 159 EVT patients were randomly divided into training and validation groups at a 7:3 ratio. A modified Rankin Scale (mRS) ≤ 2 at 90 days indicated a favorable outcome. We used univariate and multivariate logistic regression to identify analytic and radiomic predictors and create predictive models. Model performance was evaluated using the AUC, Hosmer-Lemeshow test, and decision curve analysis for discrimination, calibration, and clinical utility.

Results: A 19-feature radiomic signature reached an AUC of 0.79. Combining it with age, baseline NIHSS, diabetes, and statin use raised the clinical-radiomics nomogram's AUC to 0.85. Both decision curve and calibration curve analyses showed strong performance.

Conclusion: Combining radiomics nomogram with clinical predictors could effectively forecast EVT outcomes in acute anterior circulation large vessel occlusion stroke patients.

利用临床放射组学提名图预测急性缺血性脑卒中血管内血栓切除术的功能性结果
背景:对于大血管闭塞导致的急性缺血性卒中(AIS),建议采用血管内血栓切除术(EVT)。然而,约 50% 的患者在术后仍面临不良预后。本研究旨在评估一个整合了 CT 血管造影放射组学特征和临床变量的提名图模型能否预测 AIS 患者的 EVT 结果。90天时改良Rankin量表(mRS)≤2表示预后良好。我们使用单变量和多变量逻辑回归来确定分析和放射学预测因素,并创建预测模型。我们使用AUC、Hosmer-Lemeshow检验和决策曲线分析对模型的辨别、校准和临床实用性进行了评估:结果:19 个特征的放射学特征的 AUC 为 0.79。将其与年龄、基线 NIHSS、糖尿病和他汀类药物的使用相结合,临床放射组学提名图的 AUC 提高到了 0.85。决策曲线和校准曲线分析均显示出良好的性能:结论:将放射组学提名图与临床预测指标相结合可有效预测急性前循环大血管闭塞性卒中患者的EVT预后。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信