Wensong Shi, Yuzhui Hu, Yulun Yang, Yinsen Song, Guotao Chang, He Qian, Zhengpan Wei, Liang Gao, Yingli Sun, Ming Li, Hang Yi, Sikai Wu, Kun Wang, Yousheng Mao, Siyuan Ai, Liang Zhao, Huiyu Zheng, Xiangnan Li
{"title":"Quantitative analysis of imaging characteristics in lung adenocarcinoma in situ using artificial intelligence.","authors":"Wensong Shi, Yuzhui Hu, Yulun Yang, Yinsen Song, Guotao Chang, He Qian, Zhengpan Wei, Liang Gao, Yingli Sun, Ming Li, Hang Yi, Sikai Wu, Kun Wang, Yousheng Mao, Siyuan Ai, Liang Zhao, Huiyu Zheng, Xiangnan Li","doi":"10.1111/1759-7714.15447","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>With the rising incidence of pulmonary nodules (PNs), lung adenocarcinoma in situ (AIS) is a critical early stage of lung cancer, necessitating accurate diagnosis for early intervention. This study applies artificial intelligence (AI) for quantitative imaging analysis to differentiate AIS from atypical adenomatous hyperplasia (AAH) and minimally invasive adenocarcinoma (MIA), aiming to enhance clinical diagnosis and prevent misdiagnosis.</p><p><strong>Methods: </strong>The study analyzed 1215 PNs with confirmed AAH, AIS, and MIA from six centers using the Shukun AI diagnostic module. Parameters evaluated included demographic data and various CT imaging metrics to identify indicators for clinical application, focusing on the mean CT value's predictive value.</p><p><strong>Results: </strong>Significant differences were found in several parameters between AAH and AIS, with nodule mass showing the highest predictive value. When comparing AIS to MIA, total nodule volume was the best predictor, followed by the maximum CT value.</p><p><strong>Conclusion: </strong>The mean CT value has limited discriminative power for AIS diagnosis. Instead, the maximum CT value and maximum 3D diameter are recommended for clinical differentiation. Nodule mass and volume of solid components are strong indicators for differentiating AIS from AAH and MIA, respectively.</p>","PeriodicalId":23338,"journal":{"name":"Thoracic Cancer","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Thoracic Cancer","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/1759-7714.15447","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: With the rising incidence of pulmonary nodules (PNs), lung adenocarcinoma in situ (AIS) is a critical early stage of lung cancer, necessitating accurate diagnosis for early intervention. This study applies artificial intelligence (AI) for quantitative imaging analysis to differentiate AIS from atypical adenomatous hyperplasia (AAH) and minimally invasive adenocarcinoma (MIA), aiming to enhance clinical diagnosis and prevent misdiagnosis.
Methods: The study analyzed 1215 PNs with confirmed AAH, AIS, and MIA from six centers using the Shukun AI diagnostic module. Parameters evaluated included demographic data and various CT imaging metrics to identify indicators for clinical application, focusing on the mean CT value's predictive value.
Results: Significant differences were found in several parameters between AAH and AIS, with nodule mass showing the highest predictive value. When comparing AIS to MIA, total nodule volume was the best predictor, followed by the maximum CT value.
Conclusion: The mean CT value has limited discriminative power for AIS diagnosis. Instead, the maximum CT value and maximum 3D diameter are recommended for clinical differentiation. Nodule mass and volume of solid components are strong indicators for differentiating AIS from AAH and MIA, respectively.
期刊介绍:
Thoracic Cancer aims to facilitate international collaboration and exchange of comprehensive and cutting-edge information on basic, translational, and applied clinical research in lung cancer, esophageal cancer, mediastinal cancer, breast cancer and other thoracic malignancies. Prevention, treatment and research relevant to Asia-Pacific is a focus area, but submissions from all regions are welcomed. The editors encourage contributions relevant to prevention, general thoracic surgery, medical oncology, radiology, radiation medicine, pathology, basic cancer research, as well as epidemiological and translational studies in thoracic cancer. Thoracic Cancer is the official publication of the Chinese Society of Lung Cancer, International Chinese Society of Thoracic Surgery and is endorsed by the Korean Association for the Study of Lung Cancer and the Hong Kong Cancer Therapy Society.
The Journal publishes a range of article types including: Editorials, Invited Reviews, Mini Reviews, Original Articles, Clinical Guidelines, Technological Notes, Imaging in thoracic cancer, Meeting Reports, Case Reports, Letters to the Editor, Commentaries, and Brief Reports.