{"title":"Composition analysis of β-(In <i><sub>x</sub></i> Ga<sub>1-<i>x</i></sub> )<sub>2</sub>O<sub>3</sub> thin films coherently grown on (010) β-Ga<sub>2</sub>O<sub>3</sub> via mist CVD.","authors":"Hiroyuki Nishinaka, Yuki Kajita, Shoma Hosaka, Hiroki Miyake","doi":"10.1080/14686996.2024.2414733","DOIUrl":null,"url":null,"abstract":"<p><p>This study investigates the compositional analysis and growth of β-(In <sub><i>x</i></sub> Ga<sub>1-<i>x</i></sub> )<sub>2</sub>O<sub>3</sub> thin films on (010) β-Ga<sub>2</sub>O<sub>3</sub> substrates using mist chemical vapor deposition (CVD), including the effects of the growth temperature. We investigated the correlation between In composition and <i>b</i>-axis length in coherently grown films, vital for developing high-electron-mobility transistors and other devices based on β-(In <sub><i>x</i></sub> Ga<sub>1-<i>x</i></sub> )<sub>2</sub>O<sub>3</sub>. Analytical techniques, including X-ray diffraction (XRD), reciprocal space mapping, and atomic force microscopy, were employed to evaluate crystal structure, strain relaxation, and surface morphology. The study identified a linear relationship between In composition and <i>b</i>-axis length in coherently grown films, facilitating accurate composition determination from XRD peak positions. The films demonstrated high surface flatness with root-mean-square roughness below 0.6 nm, though minor relaxation and granular features emerged at higher In compositions (<i>x</i> = 0.083) at the growth temperature of 750°C. XRD results revealed that lattice relaxation were observed at a growth temperature of 700°C despite low In composition. In contrast, at 800°C, the In composition was higher than at 750°C, and coherent growth was achieved. The surface morphology was the flattest at 750°C. These findings indicate that the growth temperature plays a crucial role in the mist CVD growth of β-(In <sub><i>x</i></sub> Ga<sub>1-<i>x</i></sub> )<sub>2</sub>O<sub>3</sub> thin films. This study offers insights into the relationship between In composition and lattice parameters in coherently grown β-(In <sub><i>x</i></sub> Ga<sub>1-<i>x</i></sub> )<sub>2</sub>O<sub>3</sub> films, as well as the effect of growth conditions, contributing to the advancement of ultra-wide bandgap semiconductor device development.</p>","PeriodicalId":21588,"journal":{"name":"Science and Technology of Advanced Materials","volume":"25 1","pages":"2414733"},"PeriodicalIF":7.4000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11523248/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science and Technology of Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/14686996.2024.2414733","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This study investigates the compositional analysis and growth of β-(In x Ga1-x )2O3 thin films on (010) β-Ga2O3 substrates using mist chemical vapor deposition (CVD), including the effects of the growth temperature. We investigated the correlation between In composition and b-axis length in coherently grown films, vital for developing high-electron-mobility transistors and other devices based on β-(In x Ga1-x )2O3. Analytical techniques, including X-ray diffraction (XRD), reciprocal space mapping, and atomic force microscopy, were employed to evaluate crystal structure, strain relaxation, and surface morphology. The study identified a linear relationship between In composition and b-axis length in coherently grown films, facilitating accurate composition determination from XRD peak positions. The films demonstrated high surface flatness with root-mean-square roughness below 0.6 nm, though minor relaxation and granular features emerged at higher In compositions (x = 0.083) at the growth temperature of 750°C. XRD results revealed that lattice relaxation were observed at a growth temperature of 700°C despite low In composition. In contrast, at 800°C, the In composition was higher than at 750°C, and coherent growth was achieved. The surface morphology was the flattest at 750°C. These findings indicate that the growth temperature plays a crucial role in the mist CVD growth of β-(In x Ga1-x )2O3 thin films. This study offers insights into the relationship between In composition and lattice parameters in coherently grown β-(In x Ga1-x )2O3 films, as well as the effect of growth conditions, contributing to the advancement of ultra-wide bandgap semiconductor device development.
期刊介绍:
Science and Technology of Advanced Materials (STAM) is a leading open access, international journal for outstanding research articles across all aspects of materials science. Our audience is the international community across the disciplines of materials science, physics, chemistry, biology as well as engineering.
The journal covers a broad spectrum of topics including functional and structural materials, synthesis and processing, theoretical analyses, characterization and properties of materials. Emphasis is placed on the interdisciplinary nature of materials science and issues at the forefront of the field, such as energy and environmental issues, as well as medical and bioengineering applications.
Of particular interest are research papers on the following topics:
Materials informatics and materials genomics
Materials for 3D printing and additive manufacturing
Nanostructured/nanoscale materials and nanodevices
Bio-inspired, biomedical, and biological materials; nanomedicine, and novel technologies for clinical and medical applications
Materials for energy and environment, next-generation photovoltaics, and green technologies
Advanced structural materials, materials for extreme conditions.