Ozge Sidekli, John Oketch, Sean Fair, Kieran G Meade, Edward J Hollox
{"title":"β-Defensin gene copy number variation in cattle.","authors":"Ozge Sidekli, John Oketch, Sean Fair, Kieran G Meade, Edward J Hollox","doi":"10.1098/rsos.241154","DOIUrl":null,"url":null,"abstract":"<p><p>β-Defensins are peptides with antimicrobial roles, characterized by a conserved tertiary structure. Beyond antimicrobial functions, they exhibit diverse roles in both the immune response and fertility, including involvement in sperm maturation and function. Copy number variation (CNV) of β-defensin genes is extensive across mammals, including cattle, with possible implications for reproductive traits and disease resistance. In this study, we comprehensively catalogue 55 β-defensin genes in cattle. By constructing a phylogenetic tree to identify human orthologues and lineage-specific expansions, we identify 1 : 1 human orthologues for 35 bovine β-defensins. We also discover extensive β-defensin gene CNV across breeds, with <i>DEFB103,</i> in particular, showing extensive multi-allelic CNV. By comparing β-defensin expression levels in testis from calves and adult bulls, we find that 14 β-defensins, including <i>DEFB103</i>, increase in expression during sexual maturation. Analysis of β-defensin gene expression levels in the caput of adult bull epididymis, and β-defensin gene copy number, in 94 matched samples shows expression levels of four β-defensins are correlated with genomic copy numbers, including <i>DEFB103</i>. We therefore demonstrate extensive CNV in bovine β-defensin genes, in particular <i>DEFB103</i>, with potential functional consequences for fertility.</p>","PeriodicalId":21525,"journal":{"name":"Royal Society Open Science","volume":"11 10","pages":"241154"},"PeriodicalIF":2.9000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11521603/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Royal Society Open Science","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1098/rsos.241154","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
β-Defensins are peptides with antimicrobial roles, characterized by a conserved tertiary structure. Beyond antimicrobial functions, they exhibit diverse roles in both the immune response and fertility, including involvement in sperm maturation and function. Copy number variation (CNV) of β-defensin genes is extensive across mammals, including cattle, with possible implications for reproductive traits and disease resistance. In this study, we comprehensively catalogue 55 β-defensin genes in cattle. By constructing a phylogenetic tree to identify human orthologues and lineage-specific expansions, we identify 1 : 1 human orthologues for 35 bovine β-defensins. We also discover extensive β-defensin gene CNV across breeds, with DEFB103, in particular, showing extensive multi-allelic CNV. By comparing β-defensin expression levels in testis from calves and adult bulls, we find that 14 β-defensins, including DEFB103, increase in expression during sexual maturation. Analysis of β-defensin gene expression levels in the caput of adult bull epididymis, and β-defensin gene copy number, in 94 matched samples shows expression levels of four β-defensins are correlated with genomic copy numbers, including DEFB103. We therefore demonstrate extensive CNV in bovine β-defensin genes, in particular DEFB103, with potential functional consequences for fertility.
期刊介绍:
Royal Society Open Science is a new open journal publishing high-quality original research across the entire range of science on the basis of objective peer-review.
The journal covers the entire range of science and mathematics and will allow the Society to publish all the high-quality work it receives without the usual restrictions on scope, length or impact.