Susannah G Ellsworth, Alison Ross, Kevin R Y Shiue, Pranav Murthy, Miranda L Byrne-Steel, Ravi Patel, Richard C Zellars, Feng-Ming Spring Kong, Amy Miller, Kristen A Russ, Michael T Lotze
{"title":"Survey of Changes in Absolute Lymphocyte Counts and Peripheral Immune Repertoire Diversity after External Beam Radiotherapy.","authors":"Susannah G Ellsworth, Alison Ross, Kevin R Y Shiue, Pranav Murthy, Miranda L Byrne-Steel, Ravi Patel, Richard C Zellars, Feng-Ming Spring Kong, Amy Miller, Kristen A Russ, Michael T Lotze","doi":"10.1667/RADE-24-00010.1","DOIUrl":null,"url":null,"abstract":"<p><p>Radiation-induced lymphopenia (RIL) is associated with worse outcomes in patients with multiple solid tumors. Hypofractionated radiation therapy (HFRT) reduces RIL compared with conventionally fractionated radiation therapy (CFRT). However, fractionation effects on immune repertoire (IR) diversity are unknown. RNA-based T- and B-cell receptor sequencing was performed on peripheral lymphocytes collected prospectively before radiation therapy and <4 weeks after the final radiation fraction. Patients received CFRT (≤3 Gy/day × ≥10 days ± chemotherapy, n = 13) or HFRT (≥5 Gy/day × ≤5 days, n = 10), per institutional standards of care. Immune repertoire diversity parameters analyzed were number of unique CDR3 receptors (uCDR3), Shannon entropy, and sample clonality (percentage of all receptors represented by the top 10 clones). RIL was severe with concurrent chemotherapy (median %Δ ALC -58.8%, -12.5%, and -28.6% in patients treated with CFRT and chemo, CFRT alone, and HFRT, respectively). CFRT and concurrent chemotherapy was associated with more severe diversity restriction in all examined parameters than either HFRT or CFRT alone. Increased immune repertoire diversity despite decreased ALC was more common in patients treated with HFRT than CFRT and significantly less common in patients treated with concurrent chemotherapy (P < 0.001). Radiation-induced changes in immune repertoire diversity are variably reflected in the peripheral ALC. Both HFRT and CFRT caused RIL, but HFRT was associated with improved immune repertoire diversity despite RIL. The addition of chemotherapy may potentiate radiation-induced restriction in immune repertoire diversity. As immune repertoire diversity is associated with response to immunotherapy, these findings may have implications for radiation therapy/chemotherapy/immunotherapy combinations. Further studies are required to understand the relationship between radiation, circulating lymphocyte populations, immune repertoire diversity and response to treatment.</p>","PeriodicalId":20903,"journal":{"name":"Radiation research","volume":" ","pages":"837-846"},"PeriodicalIF":2.5000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radiation research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1667/RADE-24-00010.1","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Radiation-induced lymphopenia (RIL) is associated with worse outcomes in patients with multiple solid tumors. Hypofractionated radiation therapy (HFRT) reduces RIL compared with conventionally fractionated radiation therapy (CFRT). However, fractionation effects on immune repertoire (IR) diversity are unknown. RNA-based T- and B-cell receptor sequencing was performed on peripheral lymphocytes collected prospectively before radiation therapy and <4 weeks after the final radiation fraction. Patients received CFRT (≤3 Gy/day × ≥10 days ± chemotherapy, n = 13) or HFRT (≥5 Gy/day × ≤5 days, n = 10), per institutional standards of care. Immune repertoire diversity parameters analyzed were number of unique CDR3 receptors (uCDR3), Shannon entropy, and sample clonality (percentage of all receptors represented by the top 10 clones). RIL was severe with concurrent chemotherapy (median %Δ ALC -58.8%, -12.5%, and -28.6% in patients treated with CFRT and chemo, CFRT alone, and HFRT, respectively). CFRT and concurrent chemotherapy was associated with more severe diversity restriction in all examined parameters than either HFRT or CFRT alone. Increased immune repertoire diversity despite decreased ALC was more common in patients treated with HFRT than CFRT and significantly less common in patients treated with concurrent chemotherapy (P < 0.001). Radiation-induced changes in immune repertoire diversity are variably reflected in the peripheral ALC. Both HFRT and CFRT caused RIL, but HFRT was associated with improved immune repertoire diversity despite RIL. The addition of chemotherapy may potentiate radiation-induced restriction in immune repertoire diversity. As immune repertoire diversity is associated with response to immunotherapy, these findings may have implications for radiation therapy/chemotherapy/immunotherapy combinations. Further studies are required to understand the relationship between radiation, circulating lymphocyte populations, immune repertoire diversity and response to treatment.
辐射诱导的淋巴细胞减少症(RIL)与多种实体瘤患者的预后较差有关。与传统的分次放射治疗(CFRT)相比,低分次放射治疗(HFRT)可减少淋巴细胞减少症。然而,分次放疗对免疫复合物(IR)多样性的影响尚不清楚。研究人员对放疗前和放疗后收集的外周淋巴细胞进行了基于 RNA 的 T 细胞和 B 细胞受体测序。
期刊介绍:
Radiation Research publishes original articles dealing with radiation effects and related subjects in the areas of physics, chemistry, biology
and medicine, including epidemiology and translational research. The term radiation is used in its broadest sense and includes specifically
ionizing radiation and ultraviolet, visible and infrared light as well as microwaves, ultrasound and heat. Effects may be physical, chemical or
biological. Related subjects include (but are not limited to) dosimetry methods and instrumentation, isotope techniques and studies with
chemical agents contributing to the understanding of radiation effects.