Morphological and molecular characterization of Henneguya cardii n. sp. (Cnidaria: Myxosporea) from the bulbus arteriosus of European seabass Dicentrarchus labrax (Teleostei: Moronidae).
Luis F Rangel, Ricardo Severino, Maria J Santos, Sónia Rocha
{"title":"Morphological and molecular characterization of <i>Henneguya cardii</i> n. sp. (Cnidaria: Myxosporea) from the bulbus arteriosus of European seabass <i>Dicentrarchus labrax</i> (Teleostei: Moronidae).","authors":"Luis F Rangel, Ricardo Severino, Maria J Santos, Sónia Rocha","doi":"10.1017/S0031182024001112","DOIUrl":null,"url":null,"abstract":"<p><p>A new species of Myxobolidae, <i>Henneguya cardii</i> n. sp., is described infecting the European seabass <i>Dicentrarchus labrax</i>, a fish of high commercial value intensively cultivated in southern Europe. <i>Henneguya cardii</i> n. sp. was found in the bulbus arteriosus and spleen with a prevalence of infection of 13.5%. In the heart, it forms irregular whitish plasmodia measuring 1 mm in size. Mature myxospores are broadly obovoid in frontal view and ellipsoidal in lateral view, with 2 equal caudal appendages. Polar capsules are ovoid and symmetric, with 3–4 polar tubule coils. Myxospores measure 10.2 ± 0.6 (8.8–11.6) μm in length, 8.0 ± 0.7 (5.3–8.8) μm in width and 5.6 ± 0.2 (5.1–6.4) μm in thickness. Caudal appendages are 36.6 ± 3.2 (27.4–42.9) μm long. Total spore length is 47.6 ± 3.2 (41.2–53.2) μm. Polar capsules measure 4.0 ± 0.2 (3.4–4.6) by 2.2 ± 0.1 (1.9–2.6) μm. Small subunit ribosomal RNA-based tree topologies position <i>H. cardii</i> n. sp. within a lineage of marine myxobolids that is mostly comprised of other <i>Henneguya</i> species. Host-relatedness is reinforced as the main evolutionary driver for myxobolids, with the positioning of <i>H. cardii</i> n. sp. further suggesting tissue tropism as another important evolutionary driver for marine heart infecting <i>Henneguya</i>. Nonetheless, the inner complexity of this lineage suggests that identification of the evolutionary patterns driving its phylogeny will require discovery of the true diversity of marine myxobolids.</p>","PeriodicalId":19967,"journal":{"name":"Parasitology","volume":" ","pages":"1-8"},"PeriodicalIF":2.1000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Parasitology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1017/S0031182024001112","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PARASITOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
A new species of Myxobolidae, Henneguya cardii n. sp., is described infecting the European seabass Dicentrarchus labrax, a fish of high commercial value intensively cultivated in southern Europe. Henneguya cardii n. sp. was found in the bulbus arteriosus and spleen with a prevalence of infection of 13.5%. In the heart, it forms irregular whitish plasmodia measuring 1 mm in size. Mature myxospores are broadly obovoid in frontal view and ellipsoidal in lateral view, with 2 equal caudal appendages. Polar capsules are ovoid and symmetric, with 3–4 polar tubule coils. Myxospores measure 10.2 ± 0.6 (8.8–11.6) μm in length, 8.0 ± 0.7 (5.3–8.8) μm in width and 5.6 ± 0.2 (5.1–6.4) μm in thickness. Caudal appendages are 36.6 ± 3.2 (27.4–42.9) μm long. Total spore length is 47.6 ± 3.2 (41.2–53.2) μm. Polar capsules measure 4.0 ± 0.2 (3.4–4.6) by 2.2 ± 0.1 (1.9–2.6) μm. Small subunit ribosomal RNA-based tree topologies position H. cardii n. sp. within a lineage of marine myxobolids that is mostly comprised of other Henneguya species. Host-relatedness is reinforced as the main evolutionary driver for myxobolids, with the positioning of H. cardii n. sp. further suggesting tissue tropism as another important evolutionary driver for marine heart infecting Henneguya. Nonetheless, the inner complexity of this lineage suggests that identification of the evolutionary patterns driving its phylogeny will require discovery of the true diversity of marine myxobolids.
期刊介绍:
Parasitology is an important specialist journal covering the latest advances in the subject. It publishes original research and review papers on all aspects of parasitology and host-parasite relationships, including the latest discoveries in parasite biochemistry, molecular biology and genetics, ecology and epidemiology in the context of the biological, medical and veterinary sciences. Included in the subscription price are two special issues which contain reviews of current hot topics, one of which is the proceedings of the annual Symposia of the British Society for Parasitology, while the second, covering areas of significant topical interest, is commissioned by the editors and the editorial board.