George S Liu, Sharad Parulekar, Melissa C Lee, Trishia El Chemaly, Mohamed Diop, Roy Park, Nikolas H Blevins
{"title":"Artificial Intelligence Tracking of Otologic Instruments in Mastoidectomy Videos.","authors":"George S Liu, Sharad Parulekar, Melissa C Lee, Trishia El Chemaly, Mohamed Diop, Roy Park, Nikolas H Blevins","doi":"10.1097/MAO.0000000000004330","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Develop an artificial intelligence (AI) model to track otologic instruments in mastoidectomy videos.</p><p><strong>Study design: </strong>Retrospective case series.</p><p><strong>Setting: </strong>Tertiary care center.</p><p><strong>Subjects: </strong>Six otolaryngology residents (PGY 3-5) and one senior neurotology attending.</p><p><strong>Interventions: </strong>Thirteen 30-minute videos of cadaveric mastoidectomies were recorded by residents. The suction irrigator and drill were semi-manually annotated. Videos were split into training (N = 8), validation (N = 3), and test (N = 2) sets. YOLOv8, a state-of-the-art AI computer vision model, was adapted to track the instruments.</p><p><strong>Main outcome measures: </strong>Precision, recall, and mean average precision using an intersection over union cutoff of 50% (mAP50). Drill speed in two prospectively collected live mastoidectomy videos by a resident and attending surgeon.</p><p><strong>Results: </strong>The model achieved excellent performance for tracking the drill (precision 0.93, recall 0.89, and mAP50 0.93) and low performance for the suction irrigator (precision 0.67, recall 0.61, and mAP50 0.62) in test videos. Prediction speed was fast (~100 milliseconds per image). Predictions on prospective videos revealed higher mean drill speed (8.6 ± 5.7 versus 7.6 ± 7.4 mm/s, respectively; mean ± SD; p < 0.01) and duration of high drill speed (>15 mm/s; p < 0.05) in attending than resident surgery.</p><p><strong>Conclusions: </strong>An AI model can track the drill in mastoidectomy videos with high accuracy and near-real-time processing speed. Automated tracking opens the door to analyzing objective metrics of surgical skill without the need for manual annotation and will provide valuable data for future navigation and augmented reality surgical environments.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/MAO.0000000000004330","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/28 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Objective: Develop an artificial intelligence (AI) model to track otologic instruments in mastoidectomy videos.
Study design: Retrospective case series.
Setting: Tertiary care center.
Subjects: Six otolaryngology residents (PGY 3-5) and one senior neurotology attending.
Interventions: Thirteen 30-minute videos of cadaveric mastoidectomies were recorded by residents. The suction irrigator and drill were semi-manually annotated. Videos were split into training (N = 8), validation (N = 3), and test (N = 2) sets. YOLOv8, a state-of-the-art AI computer vision model, was adapted to track the instruments.
Main outcome measures: Precision, recall, and mean average precision using an intersection over union cutoff of 50% (mAP50). Drill speed in two prospectively collected live mastoidectomy videos by a resident and attending surgeon.
Results: The model achieved excellent performance for tracking the drill (precision 0.93, recall 0.89, and mAP50 0.93) and low performance for the suction irrigator (precision 0.67, recall 0.61, and mAP50 0.62) in test videos. Prediction speed was fast (~100 milliseconds per image). Predictions on prospective videos revealed higher mean drill speed (8.6 ± 5.7 versus 7.6 ± 7.4 mm/s, respectively; mean ± SD; p < 0.01) and duration of high drill speed (>15 mm/s; p < 0.05) in attending than resident surgery.
Conclusions: An AI model can track the drill in mastoidectomy videos with high accuracy and near-real-time processing speed. Automated tracking opens the door to analyzing objective metrics of surgical skill without the need for manual annotation and will provide valuable data for future navigation and augmented reality surgical environments.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.