Implementing Chicken Chorioallantoic Membrane (CAM) Assays for Validating Biomaterials in Tissue Engineering: Rationale and Methods

IF 3.2 4区 医学 Q2 ENGINEERING, BIOMEDICAL
Mélanie Dhayer, Amélia Jordao, Salim Dekiouk, Damien Cleret, Nicolas Germain, Philippe Marchetti
{"title":"Implementing Chicken Chorioallantoic Membrane (CAM) Assays for Validating Biomaterials in Tissue Engineering: Rationale and Methods","authors":"Mélanie Dhayer,&nbsp;Amélia Jordao,&nbsp;Salim Dekiouk,&nbsp;Damien Cleret,&nbsp;Nicolas Germain,&nbsp;Philippe Marchetti","doi":"10.1002/jbm.b.35496","DOIUrl":null,"url":null,"abstract":"<p>Tissue engineering is a promising approach for generating or repairing living tissues. The development of innovative biomaterials for tissue engineering has the potential to address the unmet clinical needs in certain applications. However, before these biomaterials can be used in clinical settings, they must undergo preclinical testing to ensure safety and performance. The chicken chorioallantoic membrane (CAM) assay is a preferred screening tool for studying biocompatibility, angiogenesis, and inflammation induced by biomaterials owing to ethical and economic considerations. This CAM-based platform increased the throughput of biomaterial testing for tissue engineering before in vivo testing. In this paper, we discuss the advantages of the CAM model. We also provided a step-by-step guide for implementing the CAM model in a research laboratory, along with tips and tricks for successfully running CAM assays. Finally, we present examples of biomaterials screened using CAM assays. CAM assay is a powerful in vivo model for assessing the angiogenic potential of tissue-engineered scaffolds. This guide provides a framework for conducting the assay, but specific experimental conditions should be optimized based on the scaffold material and the research question.</p>","PeriodicalId":15269,"journal":{"name":"Journal of biomedical materials research. Part B, Applied biomaterials","volume":"112 11","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jbm.b.35496","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biomedical materials research. Part B, Applied biomaterials","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jbm.b.35496","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Tissue engineering is a promising approach for generating or repairing living tissues. The development of innovative biomaterials for tissue engineering has the potential to address the unmet clinical needs in certain applications. However, before these biomaterials can be used in clinical settings, they must undergo preclinical testing to ensure safety and performance. The chicken chorioallantoic membrane (CAM) assay is a preferred screening tool for studying biocompatibility, angiogenesis, and inflammation induced by biomaterials owing to ethical and economic considerations. This CAM-based platform increased the throughput of biomaterial testing for tissue engineering before in vivo testing. In this paper, we discuss the advantages of the CAM model. We also provided a step-by-step guide for implementing the CAM model in a research laboratory, along with tips and tricks for successfully running CAM assays. Finally, we present examples of biomaterials screened using CAM assays. CAM assay is a powerful in vivo model for assessing the angiogenic potential of tissue-engineered scaffolds. This guide provides a framework for conducting the assay, but specific experimental conditions should be optimized based on the scaffold material and the research question.

Abstract Image

实施鸡绒毛膜 (CAM) 试验以验证组织工程中的生物材料:原理与方法。
组织工程是生成或修复活体组织的一种前景广阔的方法。用于组织工程的创新生物材料的开发有可能解决某些应用中尚未满足的临床需求。然而,在将这些生物材料用于临床之前,它们必须经过临床前测试,以确保其安全性和性能。出于伦理和经济方面的考虑,鸡绒毛膜(CAM)试验是研究生物材料的生物相容性、血管生成和炎症诱导的首选筛选工具。这种基于 CAM 的平台提高了组织工程生物材料在体内测试前的测试通量。本文讨论了 CAM 模型的优势。我们还提供了在研究实验室实施 CAM 模型的分步指南,以及成功运行 CAM 试验的技巧和窍门。最后,我们介绍了使用 CAM 试验筛选生物材料的实例。CAM 试验是评估组织工程支架血管生成潜能的强大体内模型。本指南提供了进行该实验的框架,但具体实验条件应根据支架材料和研究问题进行优化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.50
自引率
2.90%
发文量
199
审稿时长
12 months
期刊介绍: Journal of Biomedical Materials Research – Part B: Applied Biomaterials is a highly interdisciplinary peer-reviewed journal serving the needs of biomaterials professionals who design, develop, produce and apply biomaterials and medical devices. It has the common focus of biomaterials applied to the human body and covers all disciplines where medical devices are used. Papers are published on biomaterials related to medical device development and manufacture, degradation in the body, nano- and biomimetic- biomaterials interactions, mechanics of biomaterials, implant retrieval and analysis, tissue-biomaterial surface interactions, wound healing, infection, drug delivery, standards and regulation of devices, animal and pre-clinical studies of biomaterials and medical devices, and tissue-biopolymer-material combination products. Manuscripts are published in one of six formats: • original research reports • short research and development reports • scientific reviews • current concepts articles • special reports • editorials Journal of Biomedical Materials Research – Part B: Applied Biomaterials is an official journal of the Society for Biomaterials, Japanese Society for Biomaterials, the Australasian Society for Biomaterials, and the Korean Society for Biomaterials. Manuscripts from all countries are invited but must be in English. Authors are not required to be members of the affiliated Societies, but members of these societies are encouraged to submit their work to the journal for consideration.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信