Impact of dietary supplementation of glycocalyx precursors on vascular function in type 2 diabetes.

IF 3.3 3区 医学 Q1 PHYSIOLOGY
James A Smith, Francisco I Ramirez-Perez, Katherine Burr, Juan D Gonzalez-Vallejo, Mariana Morales-Quinones, Neil J McMillan, Larissa Ferreira-Santos, Neekun Sharma, Christopher A Foote, Luis A Martinez-Lemus, Jaume Padilla, Camila Manrique-Acevedo
{"title":"Impact of dietary supplementation of glycocalyx precursors on vascular function in type 2 diabetes.","authors":"James A Smith, Francisco I Ramirez-Perez, Katherine Burr, Juan D Gonzalez-Vallejo, Mariana Morales-Quinones, Neil J McMillan, Larissa Ferreira-Santos, Neekun Sharma, Christopher A Foote, Luis A Martinez-Lemus, Jaume Padilla, Camila Manrique-Acevedo","doi":"10.1152/japplphysiol.00651.2024","DOIUrl":null,"url":null,"abstract":"<p><p>Degradation of the endothelial glycocalyx in type 2 diabetes (T2D) is thought to contribute to impaired shear stress mechanotransduction, leading to endothelial dysfunction and the development of cardiovascular disease. Herein, we tested the hypothesis that restoration of the endothelial glycocalyx with dietary supplementation of glycocalyx precursors (DSGP, containing glucosamine sulfate, fucoidan, superoxide dismutase, and high molecular weight hyaluronan) improves endothelial function and other indices of vascular function in T2D. First, in db/db mice, we showed that treatment with DSGP (100 mg/kg/day) for four weeks restored endothelial glycocalyx length, as assessed via atomic force microscopy in aortic explants. Restoration of the glycocalyx with DSGP was accompanied by improved flow-mediated dilation (FMD) and reduced arterial stiffness in isolated mesenteric arteries. Further corroborating these findings, treatment of cultured endothelial cells with that same mixture of glycocalyx precursors promoted glycocalyx growth. Next, as an initial step to investigate the translatability of these findings, we conducted a pilot (n=22) double-blinded randomized placebo-controlled clinical trial to assess the effects of DSGP (3,712.5 mg/day) for eight weeks on endothelial glycocalyx integrity and indices of vascular function, including FMD, in Veterans with T2D. Contrary to the hypothesis, DSGP neither enhanced endothelial glycocalyx integrity nor improved vascular function indices relative to placebo. Together, these findings conceptually support the notion that restoration of the endothelial glycocalyx can lead to improvements in vascular function in a mouse model of T2D; however, DSGP as a therapeutic strategy to enhance vascular function in individuals with T2D does not appear to be efficacious.</p>","PeriodicalId":15160,"journal":{"name":"Journal of applied physiology","volume":null,"pages":null},"PeriodicalIF":3.3000,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of applied physiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1152/japplphysiol.00651.2024","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Degradation of the endothelial glycocalyx in type 2 diabetes (T2D) is thought to contribute to impaired shear stress mechanotransduction, leading to endothelial dysfunction and the development of cardiovascular disease. Herein, we tested the hypothesis that restoration of the endothelial glycocalyx with dietary supplementation of glycocalyx precursors (DSGP, containing glucosamine sulfate, fucoidan, superoxide dismutase, and high molecular weight hyaluronan) improves endothelial function and other indices of vascular function in T2D. First, in db/db mice, we showed that treatment with DSGP (100 mg/kg/day) for four weeks restored endothelial glycocalyx length, as assessed via atomic force microscopy in aortic explants. Restoration of the glycocalyx with DSGP was accompanied by improved flow-mediated dilation (FMD) and reduced arterial stiffness in isolated mesenteric arteries. Further corroborating these findings, treatment of cultured endothelial cells with that same mixture of glycocalyx precursors promoted glycocalyx growth. Next, as an initial step to investigate the translatability of these findings, we conducted a pilot (n=22) double-blinded randomized placebo-controlled clinical trial to assess the effects of DSGP (3,712.5 mg/day) for eight weeks on endothelial glycocalyx integrity and indices of vascular function, including FMD, in Veterans with T2D. Contrary to the hypothesis, DSGP neither enhanced endothelial glycocalyx integrity nor improved vascular function indices relative to placebo. Together, these findings conceptually support the notion that restoration of the endothelial glycocalyx can lead to improvements in vascular function in a mouse model of T2D; however, DSGP as a therapeutic strategy to enhance vascular function in individuals with T2D does not appear to be efficacious.

膳食中补充糖萼前体对 2 型糖尿病患者血管功能的影响。
2 型糖尿病(T2D)患者的内皮糖萼退化被认为是剪切应力机械传导受损的原因之一,从而导致内皮功能障碍和心血管疾病的发生。在此,我们测试了这样一个假设:通过膳食补充糖萼前体(DSGP,含有硫酸氨基葡萄糖、褐藻糖胶、超氧化物歧化酶和高分子量透明质酸)来恢复内皮糖萼,可以改善 T2D 的内皮功能和其他血管功能指标。首先,在 db/db 小鼠中,我们发现 DSGP(100 毫克/千克/天)治疗四周后,主动脉外植体中的内皮糖萼长度得到恢复,这是用原子力显微镜评估的结果。在使用 DSGP 恢复糖萼的同时,离体肠系膜动脉的血流介导扩张(FMD)也得到了改善,动脉僵硬度也有所降低。用相同的糖萼前体混合物处理培养的内皮细胞可促进糖萼生长,进一步证实了这些发现。接下来,作为研究这些发现可转化性的第一步,我们进行了一项试验性(n=22)双盲随机安慰剂对照临床试验,以评估连续八周服用 DSGP(3712.5 毫克/天)对患有 T2D 的退伍军人内皮糖萼完整性和血管功能指数(包括 FMD)的影响。与假设相反,与安慰剂相比,DSGP 既不能增强内皮糖萼的完整性,也不能改善血管功能指数。总之,这些研究结果从概念上支持了这样一种观点,即在 T2D 小鼠模型中,恢复内皮糖萼可导致血管功能的改善;但将 DSGP 作为一种治疗策略来增强 T2D 患者的血管功能似乎并不有效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.00
自引率
9.10%
发文量
296
审稿时长
2-4 weeks
期刊介绍: The Journal of Applied Physiology publishes the highest quality original research and reviews that examine novel adaptive and integrative physiological mechanisms in humans and animals that advance the field. The journal encourages the submission of manuscripts that examine the acute and adaptive responses of various organs, tissues, cells and/or molecular pathways to environmental, physiological and/or pathophysiological stressors. As an applied physiology journal, topics of interest are not limited to a particular organ system. The journal, therefore, considers a wide array of integrative and translational research topics examining the mechanisms involved in disease processes and mitigation strategies, as well as the promotion of health and well-being throughout the lifespan. Priority is given to manuscripts that provide mechanistic insight deemed to exert an impact on the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信