Predictive performance of machine learning models for kidney complications following coronary interventions: a systematic review and meta-analysis.

IF 1.8 4区 医学 Q3 UROLOGY & NEPHROLOGY
Soroush Najdaghi, Delaram Narimani Davani, Davood Shafie, Azin Alizadehasl
{"title":"Predictive performance of machine learning models for kidney complications following coronary interventions: a systematic review and meta-analysis.","authors":"Soroush Najdaghi, Delaram Narimani Davani, Davood Shafie, Azin Alizadehasl","doi":"10.1007/s11255-024-04257-5","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Acute kidney injury (AKI) and contrast-induced nephropathy (CIN) are common complications following percutaneous coronary intervention (PCI) or coronary angiography (CAG), presenting significant clinical challenges. Machine learning (ML) models offer promise for improving patient outcomes through early detection and intervention strategies.</p><p><strong>Methods: </strong>A comprehensive literature search following PRISMA guidelines was conducted in PubMed, Scopus, and Embase from inception to June 11, 2024. Study characteristics, ML models, performance metrics (AUC, accuracy, sensitivity, specificity, precision), and risk-of-bias assessment using the PROBAST tool were extracted. Statistical analysis used a random-effects model to pool AUC values, with heterogeneity assessed via the I<sup>2</sup> statistic.</p><p><strong>Results: </strong>From 431 initial studies, 14 met the inclusion criteria. Gradient Boosting Machine (GBM) and Support Vector Machine (SVM) models showed the highest pooled AUCs of 0.87 (95% CI: 0.82-0.92) and 0.85 (95% CI: 0.80-0.90), respectively, with low heterogeneity (I<sup>2</sup> < 30%). Random Forest (RF) had a similar AUC of 0.85 (95% CI: 0.78-0.92) but significant heterogeneity (I<sup>2</sup> > 90%). Multilayer perceptron (MLP) and XGBoost models had moderate pooled AUCs of 0.79 (95% CI: 0.74-0.84) with high heterogeneity. RF showed strong accuracy (0.83, 95% CI: 0.70-0.96), while SVM had balanced sensitivity (0.69, 95% CI: 0.63-0.75) and specificity (0.73, 95% CI: 0.60-0.86). Age, serum creatinine, left ventricular ejection fraction, and hemoglobin consistently influenced model efficacy.</p><p><strong>Conclusions: </strong>GBM and SVM models, with robust AUCs and low heterogeneity, are effective in predicting AKI and CIN post-PCI/CAG. RF, MLP, and XGBoost, despite competitive AUCs, showed considerable heterogeneity, emphasizing the need for further validation.</p>","PeriodicalId":14454,"journal":{"name":"International Urology and Nephrology","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Urology and Nephrology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s11255-024-04257-5","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"UROLOGY & NEPHROLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Acute kidney injury (AKI) and contrast-induced nephropathy (CIN) are common complications following percutaneous coronary intervention (PCI) or coronary angiography (CAG), presenting significant clinical challenges. Machine learning (ML) models offer promise for improving patient outcomes through early detection and intervention strategies.

Methods: A comprehensive literature search following PRISMA guidelines was conducted in PubMed, Scopus, and Embase from inception to June 11, 2024. Study characteristics, ML models, performance metrics (AUC, accuracy, sensitivity, specificity, precision), and risk-of-bias assessment using the PROBAST tool were extracted. Statistical analysis used a random-effects model to pool AUC values, with heterogeneity assessed via the I2 statistic.

Results: From 431 initial studies, 14 met the inclusion criteria. Gradient Boosting Machine (GBM) and Support Vector Machine (SVM) models showed the highest pooled AUCs of 0.87 (95% CI: 0.82-0.92) and 0.85 (95% CI: 0.80-0.90), respectively, with low heterogeneity (I2 < 30%). Random Forest (RF) had a similar AUC of 0.85 (95% CI: 0.78-0.92) but significant heterogeneity (I2 > 90%). Multilayer perceptron (MLP) and XGBoost models had moderate pooled AUCs of 0.79 (95% CI: 0.74-0.84) with high heterogeneity. RF showed strong accuracy (0.83, 95% CI: 0.70-0.96), while SVM had balanced sensitivity (0.69, 95% CI: 0.63-0.75) and specificity (0.73, 95% CI: 0.60-0.86). Age, serum creatinine, left ventricular ejection fraction, and hemoglobin consistently influenced model efficacy.

Conclusions: GBM and SVM models, with robust AUCs and low heterogeneity, are effective in predicting AKI and CIN post-PCI/CAG. RF, MLP, and XGBoost, despite competitive AUCs, showed considerable heterogeneity, emphasizing the need for further validation.

冠状动脉介入术后肾脏并发症的机器学习模型预测性能:系统综述和荟萃分析。
背景:急性肾损伤(AKI)和造影剂诱发肾病(CIN)是经皮冠状动脉介入治疗(PCI)或冠状动脉造影术(CAG)后常见的并发症,给临床带来了巨大挑战。机器学习(ML)模型有望通过早期检测和干预策略改善患者预后:方法:按照 PRISMA 指南在 PubMed、Scopus 和 Embase 中进行了全面的文献检索,检索时间从开始到 2024 年 6 月 11 日。提取了研究特征、ML 模型、性能指标(AUC、准确性、灵敏度、特异性、精确度)以及使用 PROBAST 工具进行的偏倚风险评估。统计分析采用随机效应模型汇总AUC值,并通过I2统计量评估异质性:在 431 项初步研究中,有 14 项符合纳入标准。梯度提升机(GBM)和支持向量机(SVM)模型的集合AUC值最高,分别为0.87(95% CI:0.82-0.92)和0.85(95% CI:0.80-0.90),异质性较低(I2 2 > 90%)。多层感知器(MLP)和 XGBoost 模型的集合 AUC 为 0.79(95% CI:0.74-0.84),属于中等水平,异质性较高。RF 显示出较高的准确性(0.83,95% CI:0.70-0.96),而 SVM 的灵敏度(0.69,95% CI:0.63-0.75)和特异性(0.73,95% CI:0.60-0.86)则比较均衡。年龄、血清肌酐、左心室射血分数和血红蛋白一直影响着模型的有效性:结论:GBM 和 SVM 模型具有稳健的 AUC 和较低的异质性,可有效预测 PCI/CAG 术后的 AKI 和 CIN。RF、MLP 和 XGBoost 尽管 AUC 具有竞争力,但却显示出相当大的异质性,这强调了进一步验证的必要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Urology and Nephrology
International Urology and Nephrology 医学-泌尿学与肾脏学
CiteScore
3.40
自引率
5.00%
发文量
329
审稿时长
1.7 months
期刊介绍: International Urology and Nephrology publishes original papers on a broad range of topics in urology, nephrology and andrology. The journal integrates papers originating from clinical practice.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信