{"title":"Anti-inflammatory effects of a methanol extract from Montanoa grandiflora DC. (Asteraceae) leaves on in vitro and in vivo models.","authors":"Mariana Sánchez-Canul, Fabiola Villa-de la Torre, Rocío Borges-Argáez, Claribel Huchin-Chan, Guillermo Valencia-Pacheco, Eunice Yáñez-Barrientos, Michelle Romero-Hernández, Angel Josabad Alonso-Castro, Víctor Ermilo Arana-Argáez","doi":"10.1007/s10787-024-01573-1","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Montanoa grandiflora, a plant species native from Mexico to Central America, locally known as \"Teresita\" in Yucatán, México, is used to alleviate anxiety, rheumatism, and stomach issues. This study aims to investigate the anti-inflammatory properties of the methanol extract of Montanoa grandiflora leaves (MMG) in experimental models of inflammation.</p><p><strong>Methods: </strong>Gas chromatography-mass spectroscopy was used to characterize the MMG; cytotoxicity was assessed by MTT assay on murine macrophages and hemolysis assay. The in vitro anti-inflammatory activity was evaluated on LPS-stimulated murine macrophages by measuring of pro- and anti-inflammatory cytokines, NO and H<sub>2</sub>O<sub>2</sub> release. The in vivo anti-inflammatory activity was evaluated using carrageenan-induced mouse paw edema, 12-O-tetradecanoylphorbol 13-acetate induced-ear edema, and 1-fluoro-2,4-dinitrobenzene induced-delayed-type hypersensitivity. In addition, the serum levels of prostaglandins and leukotrienes were assessed.</p><p><strong>Results: </strong>The main compounds found in MMG were terpenes (i.e., β-caryophyllene, (-)-α-cubebene, alloaromadendrene, ( +)-δ-cadinene, β-eudesmol), alkaloid (( ±)-nor-β-hydrastine), cyclic polyol (quinic acid), carbohydrates and their derivatives, and fatty acids (octadecatrienoic acid and octadecanoic acid). MMG did not exhibit cytotoxic or hemolytic activity. However, it demonstrated in vitro anti-inflammatory effects by increasing the production of IL-10, decreasing the levels of TNF-α, IL-1β, IL-6, NO and H<sub>2</sub>O<sub>2</sub>. MMG significantly reduced carrageenan-induced paw edema, TPA-induced ear edema, and DNFB-induced delayed-type hypersensitivity in mice with effects comparable to those of standard drugs, as well as serum levels of prostaglandins and leukotrienes.</p><p><strong>Conclusion: </strong>The anti-inflammatory activity of MMG is associated with increased IL-10 levels and inhibiting inflammatory cell migration mechanisms, without causing cytotoxic or hemolytic damage in both in vitro and in vivo assays.</p>","PeriodicalId":13551,"journal":{"name":"Inflammopharmacology","volume":" ","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inflammopharmacology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10787-024-01573-1","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Montanoa grandiflora, a plant species native from Mexico to Central America, locally known as "Teresita" in Yucatán, México, is used to alleviate anxiety, rheumatism, and stomach issues. This study aims to investigate the anti-inflammatory properties of the methanol extract of Montanoa grandiflora leaves (MMG) in experimental models of inflammation.
Methods: Gas chromatography-mass spectroscopy was used to characterize the MMG; cytotoxicity was assessed by MTT assay on murine macrophages and hemolysis assay. The in vitro anti-inflammatory activity was evaluated on LPS-stimulated murine macrophages by measuring of pro- and anti-inflammatory cytokines, NO and H2O2 release. The in vivo anti-inflammatory activity was evaluated using carrageenan-induced mouse paw edema, 12-O-tetradecanoylphorbol 13-acetate induced-ear edema, and 1-fluoro-2,4-dinitrobenzene induced-delayed-type hypersensitivity. In addition, the serum levels of prostaglandins and leukotrienes were assessed.
Results: The main compounds found in MMG were terpenes (i.e., β-caryophyllene, (-)-α-cubebene, alloaromadendrene, ( +)-δ-cadinene, β-eudesmol), alkaloid (( ±)-nor-β-hydrastine), cyclic polyol (quinic acid), carbohydrates and their derivatives, and fatty acids (octadecatrienoic acid and octadecanoic acid). MMG did not exhibit cytotoxic or hemolytic activity. However, it demonstrated in vitro anti-inflammatory effects by increasing the production of IL-10, decreasing the levels of TNF-α, IL-1β, IL-6, NO and H2O2. MMG significantly reduced carrageenan-induced paw edema, TPA-induced ear edema, and DNFB-induced delayed-type hypersensitivity in mice with effects comparable to those of standard drugs, as well as serum levels of prostaglandins and leukotrienes.
Conclusion: The anti-inflammatory activity of MMG is associated with increased IL-10 levels and inhibiting inflammatory cell migration mechanisms, without causing cytotoxic or hemolytic damage in both in vitro and in vivo assays.
期刊介绍:
Inflammopharmacology is the official publication of the Gastrointestinal Section of the International Union of Basic and Clinical Pharmacology (IUPHAR) and the Hungarian Experimental and Clinical Pharmacology Society (HECPS). Inflammopharmacology publishes papers on all aspects of inflammation and its pharmacological control emphasizing comparisons of (a) different inflammatory states, and (b) the actions, therapeutic efficacy and safety of drugs employed in the treatment of inflammatory conditions. The comparative aspects of the types of inflammatory conditions include gastrointestinal disease (e.g. ulcerative colitis, Crohn''s disease), parasitic diseases, toxicological manifestations of the effects of drugs and environmental agents, arthritic conditions, and inflammatory effects of injury or aging on skeletal muscle. The journal has seven main interest areas:
-Drug-Disease Interactions - Conditional Pharmacology - i.e. where the condition (disease or stress state) influences the therapeutic response and side (adverse) effects from anti-inflammatory drugs. Mechanisms of drug-disease and drug disease interactions and the role of different stress states
-Rheumatology - particular emphasis on methods of measurement of clinical response effects of new agents, adverse effects from anti-rheumatic drugs
-Gastroenterology - with particular emphasis on animal and human models, mechanisms of mucosal inflammation and ulceration and effects of novel and established anti-ulcer, anti-inflammatory agents, or antiparasitic agents
-Neuro-Inflammation and Pain - model systems, pharmacology of new analgesic agents and mechanisms of neuro-inflammation and pain
-Novel drugs, natural products and nutraceuticals - and their effects on inflammatory processes, especially where there are indications of novel modes action compared with conventional drugs e.g. NSAIDs
-Muscle-immune interactions during inflammation [...]