Knockdown of tyrosine hydroxylase gene affects larval survival, pupation and adult eclosion in Plagiodera versicolora.

IF 2.3 2区 农林科学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Xiaolong Liu, Xin Wang, Qi Zhang, Longji Ze, Hainan Zhang, Min Lu
{"title":"Knockdown of tyrosine hydroxylase gene affects larval survival, pupation and adult eclosion in Plagiodera versicolora.","authors":"Xiaolong Liu, Xin Wang, Qi Zhang, Longji Ze, Hainan Zhang, Min Lu","doi":"10.1111/imb.12967","DOIUrl":null,"url":null,"abstract":"<p><p>In insects, tyrosine hydroxylase (TH) plays essential roles in cuticle tanning and cuticle pigmentation. Plagiodera versicolora (Coleoptera: Chrysomelidae) is a leaf-eating forest pest in salicaceous trees worldwide. However, the function of PverTH in P. versicolora is still unknown. In this study, we obtained a PverTH gene from transcriptome analysis. The expression analysis of PverTH showed that the highest expression was found in epidermis of larvae. In this study, we used RNA interference (RNAi) technology to knockdown the PverTH gene. The results showed that ingestion of dsTH led to cuticle coloration became lighter in larvae, pupae and adults. Knockdown of PverTH gene inhibited larval growth, and consequently caused higher mortality. In addition, RNAi of TH disrupted the cuticle tanning, caused lower pupation rate, lower eclosion rate and higher deformity rate. This study indicates that PverTH is vital for the cuticular pigments and cuticle tanning. Moreover, this research suggested that the development of PverTH gene as a potential target gene to control P. versicolora.</p>","PeriodicalId":13526,"journal":{"name":"Insect Molecular Biology","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Insect Molecular Biology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1111/imb.12967","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

In insects, tyrosine hydroxylase (TH) plays essential roles in cuticle tanning and cuticle pigmentation. Plagiodera versicolora (Coleoptera: Chrysomelidae) is a leaf-eating forest pest in salicaceous trees worldwide. However, the function of PverTH in P. versicolora is still unknown. In this study, we obtained a PverTH gene from transcriptome analysis. The expression analysis of PverTH showed that the highest expression was found in epidermis of larvae. In this study, we used RNA interference (RNAi) technology to knockdown the PverTH gene. The results showed that ingestion of dsTH led to cuticle coloration became lighter in larvae, pupae and adults. Knockdown of PverTH gene inhibited larval growth, and consequently caused higher mortality. In addition, RNAi of TH disrupted the cuticle tanning, caused lower pupation rate, lower eclosion rate and higher deformity rate. This study indicates that PverTH is vital for the cuticular pigments and cuticle tanning. Moreover, this research suggested that the development of PverTH gene as a potential target gene to control P. versicolora.

敲除酪氨酸羟化酶基因会影响 Plagiodera versicolora 的幼虫存活、化蛹和成虫羽化。
在昆虫中,酪氨酸羟化酶(TH)在角质层鞣制和角质层色素沉着中发挥着重要作用。Plagiodera versicolora(鞘翅目:蝶形目)是一种食叶害虫,分布于世界各地的盐生树木中。然而,PverTH 在 P. versicolora 中的功能尚不清楚。本研究通过转录组分析获得了 PverTH 基因。PverTH 的表达分析表明,其在幼虫表皮中的表达量最高。本研究采用 RNA 干扰(RNAi)技术敲除 PverTH 基因。结果表明,摄入dsTH会导致幼虫、蛹和成虫的角质层颜色变浅。PverTH基因的敲除抑制了幼虫的生长,从而导致死亡率升高。此外,TH 的 RNAi 会破坏角质层的鞣制,导致化蛹率降低、羽化率降低和畸形率升高。该研究表明,PverTH对角质层色素和角质层鞣制至关重要。此外,该研究还建议将 PverTH 基因开发为控制 P. versicolora 的潜在靶基因。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Insect Molecular Biology
Insect Molecular Biology 生物-昆虫学
CiteScore
4.80
自引率
3.80%
发文量
68
审稿时长
6-12 weeks
期刊介绍: Insect Molecular Biology has been dedicated to providing researchers with the opportunity to publish high quality original research on topics broadly related to insect molecular biology since 1992. IMB is particularly interested in publishing research in insect genomics/genes and proteomics/proteins. This includes research related to: • insect gene structure • control of gene expression • localisation and function/activity of proteins • interactions of proteins and ligands/substrates • effect of mutations on gene/protein function • evolution of insect genes/genomes, especially where principles relevant to insects in general are established • molecular population genetics where data are used to identify genes (or regions of genomes) involved in specific adaptations • gene mapping using molecular tools • molecular interactions of insects with microorganisms including Wolbachia, symbionts and viruses or other pathogens transmitted by insects Papers can include large data sets e.g.from micro-array or proteomic experiments or analyses of genome sequences done in silico (subject to the data being placed in the context of hypothesis testing).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信