Human Umbilical Cord Mesenchymal Stem Cell-Derived Exosomes Modulate the NLRP3 Inflammasome/Caspase-1 Pathway to Repress Pyroptosis Induced by Hypoxia/Reoxygenation in Cardiac Microvascular Endothelial Cells.
{"title":"Human Umbilical Cord Mesenchymal Stem Cell-Derived Exosomes Modulate the NLRP3 Inflammasome/Caspase-1 Pathway to Repress Pyroptosis Induced by Hypoxia/Reoxygenation in Cardiac Microvascular Endothelial Cells.","authors":"Liwei Diao, Yi Wu, Xiuzheng Jiang, Bojiao Chen, Wen Zhang, Li Chen, Weijin Zhou, Lihong Jiang, Xinyuan Liu, Jingang Deng, Zhongqun Zhan, Benqing Wu, Xiaoshen Zhang","doi":"10.1536/ihj.23-500","DOIUrl":null,"url":null,"abstract":"<p><p>Human umbilical cord mesenchymal stem cell-derived exosomes (hUCMSC-Exos) have the ability to treat cardiovascular diseases (CVDs). We explored their mechanism on pyroptosis modulation in cardiac microvascular endothelial cells (CMECs).Exosomes were extracted from hUCMSCs using a differential high-speed centrifugation method, and then identified by transmission electron microscopy, nanoparticle tracking analysis, and Western blot analysis. Later, the CMECs were induced by hypoxia/reoxygenation (H/R) in vitro and processed with hUCMSC-Exos or the NLRP3 inflammasome inhibitor CY-09 and the NLRP3 inflammasome activator Nigerian sodium sulfate (NSS). A rat model of ischemia/reperfusion (I/R) injury was established in vivo, followed by hUCMSC-Exo injection. Cell viability and death, and myocardial injury were assessed by CCK-8 and LDH assays and H&E staining. Levels of GSDMD-N, NLRP3, cleaved Caspase-1, IL-1β and IL-18 proteins, and inflammatory factors (IL-1β, IL-18) were determined by Western blot analysis and ELISA.H/R-induced CMECs represented attenuated cell viability and increased cell death, as well as up-regulated levels of pyroptosis proteins (cleaved Caspase-1, GSDMD-N, IL-18, IL-1β), inflammasome key protein (NLRP3) and cell supernatant inflammatory factors (IL-18, IL-1β), while hUCMSC-Exos amplified H/R-induced CMEC viability and lowered cell death, and diminished levels of NLRP3, cleaved Caspase-1, GSDMD-N, IL-18 and IL-1β proteins, and cell supernatant inflammatory factors IL-1β and IL-18. Activating the NLRP3 inflammasome/Caspase-1 pathway partially reversed the inhibitory effect of hUCMSC-Exos on CMEC pyroptosis. hUCMSC-Exos alleviated myocardial injury in I/R rats by modulating the NLRP3 inflammasome/Caspase-1 pathway.hUCMSC-Exos weakened CMEC pyroptosis by inactivating the NLRP3 inflammasome/Caspase-1 pathway.</p>","PeriodicalId":13711,"journal":{"name":"International heart journal","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International heart journal","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1536/ihj.23-500","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Human umbilical cord mesenchymal stem cell-derived exosomes (hUCMSC-Exos) have the ability to treat cardiovascular diseases (CVDs). We explored their mechanism on pyroptosis modulation in cardiac microvascular endothelial cells (CMECs).Exosomes were extracted from hUCMSCs using a differential high-speed centrifugation method, and then identified by transmission electron microscopy, nanoparticle tracking analysis, and Western blot analysis. Later, the CMECs were induced by hypoxia/reoxygenation (H/R) in vitro and processed with hUCMSC-Exos or the NLRP3 inflammasome inhibitor CY-09 and the NLRP3 inflammasome activator Nigerian sodium sulfate (NSS). A rat model of ischemia/reperfusion (I/R) injury was established in vivo, followed by hUCMSC-Exo injection. Cell viability and death, and myocardial injury were assessed by CCK-8 and LDH assays and H&E staining. Levels of GSDMD-N, NLRP3, cleaved Caspase-1, IL-1β and IL-18 proteins, and inflammatory factors (IL-1β, IL-18) were determined by Western blot analysis and ELISA.H/R-induced CMECs represented attenuated cell viability and increased cell death, as well as up-regulated levels of pyroptosis proteins (cleaved Caspase-1, GSDMD-N, IL-18, IL-1β), inflammasome key protein (NLRP3) and cell supernatant inflammatory factors (IL-18, IL-1β), while hUCMSC-Exos amplified H/R-induced CMEC viability and lowered cell death, and diminished levels of NLRP3, cleaved Caspase-1, GSDMD-N, IL-18 and IL-1β proteins, and cell supernatant inflammatory factors IL-1β and IL-18. Activating the NLRP3 inflammasome/Caspase-1 pathway partially reversed the inhibitory effect of hUCMSC-Exos on CMEC pyroptosis. hUCMSC-Exos alleviated myocardial injury in I/R rats by modulating the NLRP3 inflammasome/Caspase-1 pathway.hUCMSC-Exos weakened CMEC pyroptosis by inactivating the NLRP3 inflammasome/Caspase-1 pathway.
期刊介绍:
Authors of research articles should disclose at the time of submission any financial arrangement they may have with a company whose product figures prominently in the submitted manuscript or with a company making a competing product. Such information will be held in confidence while the paper is under review and will not influence the editorial decision, but if the article is accepted for publication, the editors will usually discuss with the authors the manner in which such information is to be communicated to the reader.