{"title":"Intestinal microflora and metabolites affect the progression of acute pancreatitis (AP).","authors":"Zhenjiang Wang, Mingyi Guo, Sen Yang, Yuping Chen, Jianbin Cheng, Zaiwei Huang, Tongxu Wang, Xiaobei Luo, Xingxiang He, Dali Wang, Xiaohong Xu","doi":"10.1186/s13099-024-00652-6","DOIUrl":null,"url":null,"abstract":"<p><p>Specific intestinal metabolites are closely associated with the classification, severity, and necrosis of acute pancreatitis (AP) and provide novel insights for in-depth clinical investigations. In this study, the gut microbiota and metabolites of 49 AP patients at different treatment stages and severities were analysed via 16S rDNA sequencing and untargeted metabolomics to investigate the trends in gut microbiota composition and metabolome profiles observed in patients with severe AP. These findings revealed an imbalance in intestinal flora homeostasis among AP patients characterized by a decrease in probiotics and an increase in opportunistic pathogens, which leads to damage to the intestinal mucosal barrier through reduced short-chain fatty acid (SCFA) secretion and disruption of the intestinal epithelium. This dysbiosis influences energy metabolism, anti-inflammatory responses, and immune regulation, and these results highlight significant differences in energy metabolism pathways. These findings suggest that the differential composition of intestinal flora, along with alterations in intestinal metabolites and metabolic pathways, contribute to the compromised integrity of the intestinal mucosal barrier and disturbances in energy metabolism in patients with severe AP.</p>","PeriodicalId":12833,"journal":{"name":"Gut Pathogens","volume":"16 1","pages":"64"},"PeriodicalIF":4.3000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11526647/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gut Pathogens","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13099-024-00652-6","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GASTROENTEROLOGY & HEPATOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Specific intestinal metabolites are closely associated with the classification, severity, and necrosis of acute pancreatitis (AP) and provide novel insights for in-depth clinical investigations. In this study, the gut microbiota and metabolites of 49 AP patients at different treatment stages and severities were analysed via 16S rDNA sequencing and untargeted metabolomics to investigate the trends in gut microbiota composition and metabolome profiles observed in patients with severe AP. These findings revealed an imbalance in intestinal flora homeostasis among AP patients characterized by a decrease in probiotics and an increase in opportunistic pathogens, which leads to damage to the intestinal mucosal barrier through reduced short-chain fatty acid (SCFA) secretion and disruption of the intestinal epithelium. This dysbiosis influences energy metabolism, anti-inflammatory responses, and immune regulation, and these results highlight significant differences in energy metabolism pathways. These findings suggest that the differential composition of intestinal flora, along with alterations in intestinal metabolites and metabolic pathways, contribute to the compromised integrity of the intestinal mucosal barrier and disturbances in energy metabolism in patients with severe AP.
Gut PathogensGASTROENTEROLOGY & HEPATOLOGY-MICROBIOLOGY
CiteScore
7.70
自引率
2.40%
发文量
43
期刊介绍:
Gut Pathogens is a fast publishing, inclusive and prominent international journal which recognizes the need for a publishing platform uniquely tailored to reflect the full breadth of research in the biology and medicine of pathogens, commensals and functional microbiota of the gut. The journal publishes basic, clinical and cutting-edge research on all aspects of the above mentioned organisms including probiotic bacteria and yeasts and their products. The scope also covers the related ecology, molecular genetics, physiology and epidemiology of these microbes. The journal actively invites timely reports on the novel aspects of genomics, metagenomics, microbiota profiling and systems biology.
Gut Pathogens will also consider, at the discretion of the editors, descriptive studies identifying a new genome sequence of a gut microbe or a series of related microbes (such as those obtained from new hosts, niches, settings, outbreaks and epidemics) and those obtained from single or multiple hosts at one or different time points (chronological evolution).