{"title":"Distribution pattern of soil nematode communities along an elevational gradient in arid and semi-arid mountains of Northwest China.","authors":"Jingliang Chen, Yafeng Zhang, Chao Liu, Lei Huang","doi":"10.3389/fpls.2024.1466079","DOIUrl":null,"url":null,"abstract":"<p><p>Soil nematodes are the most abundant soil metazoans, occupying multiple trophic levels in the soil food web and playing an important role in soil function. Research on the biogeographic distribution patterns of soil nematode communities and their drivers has received greater attention. However, the distribution characteristics of soil nematode communities along the elevational gradient in the arid and semi-arid regions of Northwest China remain unclear. In this study, four elevational gradients (1750-1900, 1900-2100, 2100-2350 and 2350-2560 m) were established on Luoshan Mountain, Ningxia, an arid and semi-arid region in Northwest China, and soil nematodes in the soil layers of 0-10, 10-20 and 20-40 cm were investigated using the improved Baermann funnel method. The results revealed a monotonically decreasing trend in the total number of soil nematodes along the elevational gradient and soil layer depth, decreasing by 63.32% to 79.94% and 73.59% to 86.90%, respectively, while the interactions were not obvious. A total of 1487 soil nematodes belonging to 27 families and 32 genera were identified across the elevational gradient, with <i>Helicotylenchus</i> as the dominant genus, accounting for 10.43% of the total number of nematodes, and bacterivore nematodes as the main trophic groups, accounting for 32.39% to 52.55% of the relative abundance at each elevation, which increased with increasing elevation. Soil nematode community diversity, richness and maturity indices were relatively low at high elevation and decreased by 44.62%, 48% and 54.74%, respectively, with increasing soil layer depth at high elevations. Compared to low elevations, high-elevation soils experienced greater disturbance, reduced structural complexity and nutrient enrichment of the soil food web, and a shift in soil organic matter decomposition from bacterial to fungal pathways as elevation increased. Finally, redundancy analysis showed that soil pH, bulk density, soil moisture, soil organic carbon, available nitrogen, available phosphorus and available potassium were the main soil factors affecting the composition of soil nematode communities, which well explained the differences in nematode communities at different elevations and soil depths. This study can be used as basic information for further research on soil biota in this mountainous region, expanding our further understanding of the spatial ecology of soil nematodes in the arid and semi-arid mountain ecosystems.</p>","PeriodicalId":12632,"journal":{"name":"Frontiers in Plant Science","volume":null,"pages":null},"PeriodicalIF":4.1000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11523865/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Plant Science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3389/fpls.2024.1466079","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Soil nematodes are the most abundant soil metazoans, occupying multiple trophic levels in the soil food web and playing an important role in soil function. Research on the biogeographic distribution patterns of soil nematode communities and their drivers has received greater attention. However, the distribution characteristics of soil nematode communities along the elevational gradient in the arid and semi-arid regions of Northwest China remain unclear. In this study, four elevational gradients (1750-1900, 1900-2100, 2100-2350 and 2350-2560 m) were established on Luoshan Mountain, Ningxia, an arid and semi-arid region in Northwest China, and soil nematodes in the soil layers of 0-10, 10-20 and 20-40 cm were investigated using the improved Baermann funnel method. The results revealed a monotonically decreasing trend in the total number of soil nematodes along the elevational gradient and soil layer depth, decreasing by 63.32% to 79.94% and 73.59% to 86.90%, respectively, while the interactions were not obvious. A total of 1487 soil nematodes belonging to 27 families and 32 genera were identified across the elevational gradient, with Helicotylenchus as the dominant genus, accounting for 10.43% of the total number of nematodes, and bacterivore nematodes as the main trophic groups, accounting for 32.39% to 52.55% of the relative abundance at each elevation, which increased with increasing elevation. Soil nematode community diversity, richness and maturity indices were relatively low at high elevation and decreased by 44.62%, 48% and 54.74%, respectively, with increasing soil layer depth at high elevations. Compared to low elevations, high-elevation soils experienced greater disturbance, reduced structural complexity and nutrient enrichment of the soil food web, and a shift in soil organic matter decomposition from bacterial to fungal pathways as elevation increased. Finally, redundancy analysis showed that soil pH, bulk density, soil moisture, soil organic carbon, available nitrogen, available phosphorus and available potassium were the main soil factors affecting the composition of soil nematode communities, which well explained the differences in nematode communities at different elevations and soil depths. This study can be used as basic information for further research on soil biota in this mountainous region, expanding our further understanding of the spatial ecology of soil nematodes in the arid and semi-arid mountain ecosystems.
期刊介绍:
In an ever changing world, plant science is of the utmost importance for securing the future well-being of humankind. Plants provide oxygen, food, feed, fibers, and building materials. In addition, they are a diverse source of industrial and pharmaceutical chemicals. Plants are centrally important to the health of ecosystems, and their understanding is critical for learning how to manage and maintain a sustainable biosphere. Plant science is extremely interdisciplinary, reaching from agricultural science to paleobotany, and molecular physiology to ecology. It uses the latest developments in computer science, optics, molecular biology and genomics to address challenges in model systems, agricultural crops, and ecosystems. Plant science research inquires into the form, function, development, diversity, reproduction, evolution and uses of both higher and lower plants and their interactions with other organisms throughout the biosphere. Frontiers in Plant Science welcomes outstanding contributions in any field of plant science from basic to applied research, from organismal to molecular studies, from single plant analysis to studies of populations and whole ecosystems, and from molecular to biophysical to computational approaches.
Frontiers in Plant Science publishes articles on the most outstanding discoveries across a wide research spectrum of Plant Science. The mission of Frontiers in Plant Science is to bring all relevant Plant Science areas together on a single platform.