Algal polysaccharides: new perspectives for the treatment of basal ganglia neurodegenerative diseases.

IF 2.1 4区 医学 Q1 ANATOMY & MORPHOLOGY
Frontiers in Neuroanatomy Pub Date : 2024-10-16 eCollection Date: 2024-01-01 DOI:10.3389/fnana.2024.1465421
Alessandra Marinho Miranda Lucena, Eudes Euler de Souza Lucena, Sebastião Pacheco Duque Neto, Leonardo Thiago Duarte Barreto Nobre, Hugo Alexandre Oliveira Rocha, Rafael Barros Gomes Câmara
{"title":"Algal polysaccharides: new perspectives for the treatment of basal ganglia neurodegenerative diseases.","authors":"Alessandra Marinho Miranda Lucena, Eudes Euler de Souza Lucena, Sebastião Pacheco Duque Neto, Leonardo Thiago Duarte Barreto Nobre, Hugo Alexandre Oliveira Rocha, Rafael Barros Gomes Câmara","doi":"10.3389/fnana.2024.1465421","DOIUrl":null,"url":null,"abstract":"<p><p>The objective of this review was to verify the therapeutic effect of polysaccharides derived from algae in neurodegenerative disease models involving the basal ganglia. To achieve this goal, a literature search was conducted in PubMed, Science Direct, Scopus, Web of Science, Embase, and Google Scholar databases. The descriptors \"neuroprotective or neural regenerative or immunomodulatory activity or neuroprotection,\" \"polysaccharide or carbohydrate or carbohydrate polymers,\" \"marine algae or seaweed,\" and \"basal ganglia\" according to the Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) methodology were used. This methodology involved the steps of searching, pre-selection, and inclusion of articles. A total of 737 records were identified. Following the data analysis, 698 studies were excluded, resulting in a final sample of 8 studies. Species such as <i>Turbinaria decurrens</i>, <i>Gracilaria cornea</i>, <i>Chlorella pyrenoidosa</i>, <i>Arthrospira (Spirulina) platensis</i>, <i>Fucus vesiculosus</i>, and <i>Laminaria japonica</i> have demonstrated significant neuroprotective effects. This review suggests that polysaccharides derived from marine algae possess therapeutic potential for neuroprotection, modulation of inflammation, and amelioration of functional deficits. Their use in neurodegenerative disease models warrants further consideration.</p>","PeriodicalId":12572,"journal":{"name":"Frontiers in Neuroanatomy","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11521925/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Neuroanatomy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fnana.2024.1465421","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"ANATOMY & MORPHOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The objective of this review was to verify the therapeutic effect of polysaccharides derived from algae in neurodegenerative disease models involving the basal ganglia. To achieve this goal, a literature search was conducted in PubMed, Science Direct, Scopus, Web of Science, Embase, and Google Scholar databases. The descriptors "neuroprotective or neural regenerative or immunomodulatory activity or neuroprotection," "polysaccharide or carbohydrate or carbohydrate polymers," "marine algae or seaweed," and "basal ganglia" according to the Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) methodology were used. This methodology involved the steps of searching, pre-selection, and inclusion of articles. A total of 737 records were identified. Following the data analysis, 698 studies were excluded, resulting in a final sample of 8 studies. Species such as Turbinaria decurrens, Gracilaria cornea, Chlorella pyrenoidosa, Arthrospira (Spirulina) platensis, Fucus vesiculosus, and Laminaria japonica have demonstrated significant neuroprotective effects. This review suggests that polysaccharides derived from marine algae possess therapeutic potential for neuroprotection, modulation of inflammation, and amelioration of functional deficits. Their use in neurodegenerative disease models warrants further consideration.

海藻多糖:治疗基底节神经退行性疾病的新视角。
本综述旨在验证藻类多糖对基底节神经退行性疾病模型的治疗效果。为实现这一目标,我们在 PubMed、Science Direct、Scopus、Web of Science、Embase 和 Google Scholar 数据库中进行了文献检索。根据系统综述和元分析首选报告项目(PRISMA)方法,使用了 "神经保护或神经再生或免疫调节活性或神经保护"、"多糖或碳水化合物或碳水化合物聚合物"、"海藻或紫菜 "和 "基底节 "等描述符。该方法包括搜索、预选和纳入文章等步骤。共确定了 737 条记录。经过数据分析,排除了 698 项研究,最终确定了 8 项研究样本。Turbinaria decurrens、Gracilaria cornea、Chlorella pyrenoidosa、Arthrospira (Spirulina) platensis、Fucus vesiculosus 和 Laminaria japonica 等物种已证明具有显著的神经保护作用。这篇综述表明,从海藻中提取的多糖在保护神经、调节炎症和改善功能障碍方面具有治疗潜力。它们在神经退行性疾病模型中的应用值得进一步考虑。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Frontiers in Neuroanatomy
Frontiers in Neuroanatomy ANATOMY & MORPHOLOGY-NEUROSCIENCES
CiteScore
4.70
自引率
3.40%
发文量
122
审稿时长
>12 weeks
期刊介绍: Frontiers in Neuroanatomy publishes rigorously peer-reviewed research revealing important aspects of the anatomical organization of all nervous systems across all species. Specialty Chief Editor Javier DeFelipe at the Cajal Institute (CSIC) is supported by an outstanding Editorial Board of international experts. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics, clinicians and the public worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信