Deciphering the Sertoli Cell Signaling Pathway with Protein-Protein Interaction, Single-Cell Sequencing, and Gene Ontology.

IF 1.2 4区 医学 Q4 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Danial Hashemi Karoii, Gohar Javadzadeh, Hossein Azizi, Fadhil Farhood M Al-Joborae, Mehdi Amirian
{"title":"Deciphering the Sertoli Cell Signaling Pathway with Protein-Protein Interaction, Single-Cell Sequencing, and Gene Ontology.","authors":"Danial Hashemi Karoii, Gohar Javadzadeh, Hossein Azizi, Fadhil Farhood M Al-Joborae, Mehdi Amirian","doi":"10.1089/cell.2024.0059","DOIUrl":null,"url":null,"abstract":"<p><p>Spermatogenesis constitutes a complex and intricate cascade of differentiation, indispensable for the male reproductive competence. The intercellular communication conduits of Sertoli cells (SCs) are pivotal in orchestrating this cascade ensuring sustenance and development of germ cells. Single cells and bioinformatics recently demonstrated articles are used for the regulatory modalities through which SCs modulate spermatogenesis, specifically <i>via</i> androgen receptors (ARs), the transforming growth factor-beta/Smad axis, mitogen-activated protein kinases, cAMP/protein kinase A (PKA), phosphatidylinositol 4,5-bisphosphate 3-kinase (PI3k)/AKT serine threonine kinase (Akt), AMP-activated protein kinase, and AR pathways. Within this framework, homeostasis of gap junction dynamics, cryptic sites and the activities at tight junctions and adherens junctions, with the integrity of the testicular barrier, glucose assimilation, lactate distribution, being governed also along with SC maturation. Disruptions in activities or abnormal concentration in derangements in AR, cAMP/PKA, and PI3k/Akt pathways, and as well as the molecules that comprise them, would present male infertility.</p>","PeriodicalId":9708,"journal":{"name":"Cellular reprogramming","volume":"26 5","pages":"135-145"},"PeriodicalIF":1.2000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellular reprogramming","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/cell.2024.0059","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Spermatogenesis constitutes a complex and intricate cascade of differentiation, indispensable for the male reproductive competence. The intercellular communication conduits of Sertoli cells (SCs) are pivotal in orchestrating this cascade ensuring sustenance and development of germ cells. Single cells and bioinformatics recently demonstrated articles are used for the regulatory modalities through which SCs modulate spermatogenesis, specifically via androgen receptors (ARs), the transforming growth factor-beta/Smad axis, mitogen-activated protein kinases, cAMP/protein kinase A (PKA), phosphatidylinositol 4,5-bisphosphate 3-kinase (PI3k)/AKT serine threonine kinase (Akt), AMP-activated protein kinase, and AR pathways. Within this framework, homeostasis of gap junction dynamics, cryptic sites and the activities at tight junctions and adherens junctions, with the integrity of the testicular barrier, glucose assimilation, lactate distribution, being governed also along with SC maturation. Disruptions in activities or abnormal concentration in derangements in AR, cAMP/PKA, and PI3k/Akt pathways, and as well as the molecules that comprise them, would present male infertility.

利用蛋白质-蛋白质相互作用、单细胞测序和基因本体解密Sertoli细胞信号通路
精子发生是一个复杂而错综复杂的分化级联,是男性生殖能力不可或缺的组成部分。塞尔托利细胞(SC)的细胞间通信管道在协调这一级联过程中发挥着关键作用,确保了生殖细胞的维持和发育。单细胞和生物信息学最近发表的文章证明了SCs调节精子发生的方式,特别是通过雄激素受体(ARs)、转化生长因子-β/Smad轴、有丝分裂原激活蛋白激酶、cAMP/蛋白激酶 A(PKA)、磷脂酰肌醇 4,5-二磷酸 3-激酶(PI3k)/Akt 丝氨酸苏氨酸激酶(Akt)、AMP 激活蛋白激酶和 AR 通路。在这一框架内,间隙连接动态、隐匿位点以及紧密连接和粘连连接活动的平衡、睾丸屏障的完整性、葡萄糖同化、乳酸分布也与 SC 的成熟密切相关。AR、cAMP/PKA 和 PI3k/Akt 通路以及组成这些通路的分子的活动中断或异常浓度失调会导致男性不育。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cellular reprogramming
Cellular reprogramming CELL & TISSUE ENGINEERING-BIOTECHNOLOGY & APPLIED MICROBIOLOGY
CiteScore
2.50
自引率
6.20%
发文量
37
审稿时长
3 months
期刊介绍: Cellular Reprogramming is the premier journal dedicated to providing new insights on the etiology, development, and potential treatment of various diseases through reprogramming cellular mechanisms. The Journal delivers information on cutting-edge techniques and the latest high-quality research and discoveries that are transforming biomedical research. Cellular Reprogramming coverage includes: Somatic cell nuclear transfer and reprogramming in early embryos Embryonic stem cells Nuclear transfer stem cells (stem cells derived from nuclear transfer embryos) Generation of induced pluripotent stem (iPS) cells and/or potential for cell-based therapies Epigenetics Adult stem cells and pluripotency.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信