Does swimming at the bottom serve as a hydraulic advantage for benthic fish Neogobius melanostomus Pallas (1814) in flowing water?

IF 1.8 4区 生物学 Q3 BIOLOGY
Biology Open Pub Date : 2024-11-15 Epub Date: 2024-10-30 DOI:10.1242/bio.060533
Nandhakumar Govindasamy, Georg Rauter, Frank Seidel, Patricia Burkhardt-Holm, Philipp E Hirsch, Joschka Wiegleb
{"title":"Does swimming at the bottom serve as a hydraulic advantage for benthic fish Neogobius melanostomus Pallas (1814) in flowing water?","authors":"Nandhakumar Govindasamy, Georg Rauter, Frank Seidel, Patricia Burkhardt-Holm, Philipp E Hirsch, Joschka Wiegleb","doi":"10.1242/bio.060533","DOIUrl":null,"url":null,"abstract":"<p><p>Benthic fish, such as the round goby (Neogobius melanostomus Pallas, 1814) tend to swim near the bottom, especially at increased water velocities. To test whether these fish have a hydraulic advantage from swimming near the bottom and how the substrate affects the forces experienced, we measured the hydraulic forces experienced by preserved fish in a flow channel. The fish were tested 5.0 mm above the bottom at smooth and rough surface, and in the water column (10.0 cm elevation) above smooth and rough surface at 0.95 m/s water velocity. No significant effect among the mean hydraulic forces was observed between both fish positions, whereas the mean hydraulic forces in the water column were significantly higher (P<0.05) above the rough surface (mean 0.077 N±0.025 s.d.) than above the smooth surface (mean 0.068 N±0.021 s.d.). A convolutional neural network (CNN) predicted the column smooth treatment was the most characteristic force data time series (mean F1=0.88±0.03 s.d.). We conclude that the body posture and body movements of the fish are more relevant for the hydraulic forces experienced by the fish than the vertical position in the water column. Further factors explaining the affinity to swimming near the bottom are discussed.</p>","PeriodicalId":9216,"journal":{"name":"Biology Open","volume":"13 11","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11575849/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biology Open","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1242/bio.060533","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/30 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Benthic fish, such as the round goby (Neogobius melanostomus Pallas, 1814) tend to swim near the bottom, especially at increased water velocities. To test whether these fish have a hydraulic advantage from swimming near the bottom and how the substrate affects the forces experienced, we measured the hydraulic forces experienced by preserved fish in a flow channel. The fish were tested 5.0 mm above the bottom at smooth and rough surface, and in the water column (10.0 cm elevation) above smooth and rough surface at 0.95 m/s water velocity. No significant effect among the mean hydraulic forces was observed between both fish positions, whereas the mean hydraulic forces in the water column were significantly higher (P<0.05) above the rough surface (mean 0.077 N±0.025 s.d.) than above the smooth surface (mean 0.068 N±0.021 s.d.). A convolutional neural network (CNN) predicted the column smooth treatment was the most characteristic force data time series (mean F1=0.88±0.03 s.d.). We conclude that the body posture and body movements of the fish are more relevant for the hydraulic forces experienced by the fish than the vertical position in the water column. Further factors explaining the affinity to swimming near the bottom are discussed.

底栖鱼类 Neogobius melanostomus Pallas(1814 年)在流水中的水力优势是在水底游动吗?
底栖鱼类,如圆虾虎鱼(Neogobius melanostomus Pallas,1814 年)倾向于在底部附近游动,尤其是在水速增加时。为了测试这些鱼类在靠近底部游动时是否具有水力优势,以及底质对所受力的影响,我们测量了保留下来的鱼类在流道中所受的水力。在水速为 0.95 米/秒的条件下,分别在光滑表面和粗糙表面离水底 5.0 毫米处以及光滑表面和粗糙表面上方的水柱(10.0 厘米高程)中对鱼类进行了测试。两种鱼体位置的平均水力没有明显差异,而水柱中的平均水力明显更高(P
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biology Open
Biology Open BIOLOGY-
CiteScore
3.90
自引率
0.00%
发文量
162
审稿时长
8 weeks
期刊介绍: Biology Open (BiO) is an online Open Access journal that publishes peer-reviewed original research across all aspects of the biological sciences. BiO aims to provide rapid publication for scientifically sound observations and valid conclusions, without a requirement for perceived impact.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信