Reliable replicative lifespan determination of yeast with a single-channel microfluidic chip.

IF 1.8 4区 生物学 Q3 BIOLOGY
Biology Open Pub Date : 2024-11-15 Epub Date: 2024-11-26 DOI:10.1242/bio.060596
Valentina Salzman, Moises R Bustamante Torres, Francisco G Correa Tedesco, Nahuel Tarkowski, María J Godás Willems, Joaquín N Bravo, Magalí Mercuri, Dante G Mercado, Guido Berlin, Martín G Bellino, Pablo S Aguilar, Laura C Estrada
{"title":"Reliable replicative lifespan determination of yeast with a single-channel microfluidic chip.","authors":"Valentina Salzman, Moises R Bustamante Torres, Francisco G Correa Tedesco, Nahuel Tarkowski, María J Godás Willems, Joaquín N Bravo, Magalí Mercuri, Dante G Mercado, Guido Berlin, Martín G Bellino, Pablo S Aguilar, Laura C Estrada","doi":"10.1242/bio.060596","DOIUrl":null,"url":null,"abstract":"<p><p>Saccharomyces cerevisiae is a powerful model for aging research due to its short lifespan and genetic malleability. Microfluidic devices offer an attractive approach enabling rapid monitoring of hundreds of cells during their entire replicative lifespan (RLS). Yet, key operational issues such as contaminations, cell loss, and cell-aggregates-dependent flow obstruction can hinder RLS experiments. We report the development of a microfluidic device configuration that effectively prevents flow blockage. We conducted comprehensive performance characterization, evaluating trapping efficiency, cell retention, budding orientation, and cell aggregate formation. The optimized device successfully supported long-term culturing and reliable RLS measurements of budding yeast strains. For accurate lifespan determination, a detailed workflow is provided that includes device fabrication, live microscopy setup, and characterization of cell age distribution. This work describes an accessible and reliable microfluidic device for yeast RLS studies, promoting further exploration in aging research.</p>","PeriodicalId":9216,"journal":{"name":"Biology Open","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11657196/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biology Open","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1242/bio.060596","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/26 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Saccharomyces cerevisiae is a powerful model for aging research due to its short lifespan and genetic malleability. Microfluidic devices offer an attractive approach enabling rapid monitoring of hundreds of cells during their entire replicative lifespan (RLS). Yet, key operational issues such as contaminations, cell loss, and cell-aggregates-dependent flow obstruction can hinder RLS experiments. We report the development of a microfluidic device configuration that effectively prevents flow blockage. We conducted comprehensive performance characterization, evaluating trapping efficiency, cell retention, budding orientation, and cell aggregate formation. The optimized device successfully supported long-term culturing and reliable RLS measurements of budding yeast strains. For accurate lifespan determination, a detailed workflow is provided that includes device fabrication, live microscopy setup, and characterization of cell age distribution. This work describes an accessible and reliable microfluidic device for yeast RLS studies, promoting further exploration in aging research.

利用单通道微流控芯片可靠测定酵母的复制寿命
毕赤酵母(Saccharomyces cerevisiae)寿命短,基因可塑性强,是研究衰老的有力模型。微流控装置提供了一种极具吸引力的方法,可在数百个细胞的整个复制寿命(RLS)期间对其进行快速监测。然而,一些关键的操作问题,如污染、细胞丢失和细胞聚集导致的流动阻塞,都会阻碍 RLS 实验的进行。我们报告了一种能有效防止流动阻塞的微流体设备配置的开发情况。我们进行了全面的性能表征,评估了捕获效率、细胞保留率、出芽定向和细胞聚集的形成。优化后的装置成功支持了长期培养和可靠的出芽酵母菌株 RLS 测量。为了准确测定细胞寿命,本文提供了一个详细的工作流程,包括设备制造、活体显微镜设置和细胞年龄分布表征。这项工作描述了一种用于酵母 RLS 研究的简便可靠的微流控装置,促进了衰老研究的进一步探索。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biology Open
Biology Open BIOLOGY-
CiteScore
3.90
自引率
0.00%
发文量
162
审稿时长
8 weeks
期刊介绍: Biology Open (BiO) is an online Open Access journal that publishes peer-reviewed original research across all aspects of the biological sciences. BiO aims to provide rapid publication for scientifically sound observations and valid conclusions, without a requirement for perceived impact.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信