{"title":"Does the FARNet neural network algorithm accurately identify Posteroanterior cephalometric landmarks?","authors":"Merve Gonca, İbrahim Şevki Bayrakdar, Özer Çelik","doi":"10.1186/s12880-024-01478-z","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>We explored whether the feature aggregation and refinement network (FARNet) algorithm accurately identified posteroanterior (PA) cephalometric landmarks.</p><p><strong>Methods: </strong>We identified 47 landmarks on 1,431 PA cephalograms of which 1,177 were used for training, 117 for validation, and 137 for testing. A FARNet-based artificial intelligence (AI) algorithm automatically detected the landmarks. Model effectiveness was calculated by deriving the mean radial error (MRE) and the successful detection rates (SDRs) within 2, 2.5, 3, and 4 mm. The Mann-Whitney U test was performed on the Euclidean differences between repeated manual identifications and AI trials. The direction in differences was analyzed, and whether differences moved in the same or opposite directions relative to ground truth on both the x and y-axis.</p><p><strong>Results: </strong>The AI system (web-based CranioCatch annotation software (Eskişehir, Turkey)) identified 47 anatomical landmarks in PA cephalograms. The right gonion SDRs were the highest, thus 96.4, 97.8, 100, and 100% within 2, 2.5, 3, and 4 mm, respectively. The right gonion MRE was 0.94 ± 0.53 mm. The right condylon SDRs were the lowest, thus 32.8, 45.3, 54.0, and 67.9% within the same thresholds. The right condylon MRE was 3.31 ± 2.25 mm. The AI model's reliability and accuracy were similar to a human expert's. AI was better at four skeleton points than the expert, whereas the expert was better at one skeletal and seven dental points (P < 0.05). Most of the points exhibited significant deviations along the y-axis. Compared to ground truth, most of the points in AI and the second trial showed opposite movement on the x-axis and the same on the y-axis.</p><p><strong>Conclusions: </strong>The FARNet algorithm streamlined orthodontic diagnosis.</p>","PeriodicalId":9020,"journal":{"name":"BMC Medical Imaging","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11526671/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Medical Imaging","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12880-024-01478-z","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Background: We explored whether the feature aggregation and refinement network (FARNet) algorithm accurately identified posteroanterior (PA) cephalometric landmarks.
Methods: We identified 47 landmarks on 1,431 PA cephalograms of which 1,177 were used for training, 117 for validation, and 137 for testing. A FARNet-based artificial intelligence (AI) algorithm automatically detected the landmarks. Model effectiveness was calculated by deriving the mean radial error (MRE) and the successful detection rates (SDRs) within 2, 2.5, 3, and 4 mm. The Mann-Whitney U test was performed on the Euclidean differences between repeated manual identifications and AI trials. The direction in differences was analyzed, and whether differences moved in the same or opposite directions relative to ground truth on both the x and y-axis.
Results: The AI system (web-based CranioCatch annotation software (Eskişehir, Turkey)) identified 47 anatomical landmarks in PA cephalograms. The right gonion SDRs were the highest, thus 96.4, 97.8, 100, and 100% within 2, 2.5, 3, and 4 mm, respectively. The right gonion MRE was 0.94 ± 0.53 mm. The right condylon SDRs were the lowest, thus 32.8, 45.3, 54.0, and 67.9% within the same thresholds. The right condylon MRE was 3.31 ± 2.25 mm. The AI model's reliability and accuracy were similar to a human expert's. AI was better at four skeleton points than the expert, whereas the expert was better at one skeletal and seven dental points (P < 0.05). Most of the points exhibited significant deviations along the y-axis. Compared to ground truth, most of the points in AI and the second trial showed opposite movement on the x-axis and the same on the y-axis.
Conclusions: The FARNet algorithm streamlined orthodontic diagnosis.
期刊介绍:
BMC Medical Imaging is an open access journal publishing original peer-reviewed research articles in the development, evaluation, and use of imaging techniques and image processing tools to diagnose and manage disease.